
LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 1 of 12

2022-09-06 LECTURE 07 – PROGRAM CONTROL – II

 contents

o constants and literals

o data types and their ranges

o format specifiers

o escape sequences

o operators and their precedence

o structured programming

o nested control structures

 while in while

 for in for

o concepts discussed in the lecture

o exercises

 literals and constants

o literal refer to fixed values that the program may not alter during its execution or a value

that is expressed as itself

o for example, the number 25 or the string "Hello World" are both literals

o an integer is a numeric literal (associated with numbers) without any fractional or

exponential part, there are three type of integer literals

 decimal (number in base 10)

 0, -9, 22

 octal (number in base 8)

 021 // this is equal to 2 * 81 + 1 * 80 = 16 + 1 = 17 decimal

 077 // this is equal to 7 * 81 + 7 * 80 = 56 + 7 = 63 decimal

 033 // this is equal to 3 * 81 + 3 * 80 = 24 + 3 = 27 decimal

 hexadecimal (number in base 16)

 0x7f // this is equal to 7 * 161 + 15 * 80 = 116 + 15 = 131 decimal

 0x2a // this is equal to 2 * 161 + 10 * 80 = 32 + 10 = 42 decimal

 0x521 // this is equal to 5 * 162 + 2 * 161 + 1 * 161 = 1280 + 32 + 1 = 1313

decimal

o a floating-point literal is a numeric literal that has either a fractional form or an exponent

form, floating point literals are expressed as follows

 -2.0

 0.0000234

 -0.22E-5 // this means -0.22 x 10-5

o a character literal is created by enclosing a single character inside single quotation marks,

character literals are expressed as follows

 'a', 'm', 'F', '2', '}'

o a string literal is a sequence of characters enclosed in double-quote marks, string literals

are expressed as follows

 "good" //string constant

 "" //null string constant

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 2 of 12

 " " //string constant of six white space

 "x" //string constant having a single character.

 "Earth is round\n" //prints string with a newline

o constant

 to define a variable whose value cannot be changed during the execution of a

program, it can defined using the const keyword which creates a constant

 const int a = 10;

 const float PI = 3.14;

 data types

o in C programming, data types are used for declarations of variables

o it determines the type and size of data associated with variables

o commonly used types in C programming include
 int: integers are whole numbers that can have both zero, positive and negative

values but no decimal values. For example, 0, -5, 10

 the size of int is usually 4 bytes (32 bits), and, it can take 232 distinct states,
it can hold the values in the range from -2147483648 to 2147483647

 float, double and long double: float, double and long double are used to hold real
numbers

 the size of float is usually 4 bytes (32 bits), and, it can hold the values in
the range from 3.4E-38 to 3.4E+38

 the size of double is usually 8 bytes (64 bits), and, it can hold the values
in the range from 1.7E-308 to 1.7E+308

 the size of long double is usually 10 to 16 bytes (80 to 128 bits), and, it
can hold the values in the range from 3.4E-4932 to 1.1E+4932

 short int, long int, and long long int:

 if you want to use, only a small integer you should use short, and, it can
hold the values in the range from −32,767 to +32,767

 if you want to use, only a long integer you should use long, and, it can
hold the values in the range from -2,147,483,648 to 2,147,483,647

 if you want to use, very long integer then you should use long long int,
and, it can hold the values in the range from -(263) to (263)-1

 signed and unsigned int: in C, signed and unsigned are type modifiers, you can
alter the data storage of a data type by using them:

 signed - allows for storage of both positive and negative numbers
 unsigned - allows for storage of only positive numbers

 unsigned short int: it can hold the values in the range from 0 to 65535

 unsigned long int: it can hold the values in the range from 0 to
+4,294,967,295

 unsigned long long int: it can hold the values in the range from 0 to
18,446,744,073,709,551,615

 char: keyword char is used for declaring character type variables.

 signed char:
o it can hold the values in the range from -128 to 127

 unsigned char:
o it can hold the values in the range from 0 to 255

o example (using sizeof statements): a program that uses sizeof statements

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 3 of 12

// L07-C01
1. #include <stdio.h>
2. int main() {
3. int a;
4. char b;
5. float c;
6. short int d;
7. unsigned int e;
8. long int f;
9. long long int g;
10. unsigned long int h;
11. unsigned long long int I;
12. signed char j;
13. unsigned char k;
14. long double l;
15. printf("size of int = %d bytes\n", sizeof(a));
16. printf("size of char = %d bytes\n", sizeof(b));
17. printf("size of float = %d bytes\n", sizeof(c));
18. printf("size of short int = %d bytes\n", sizeof(d));
19. printf("size of unsigned int = %d bytes\n", sizeof(e));
20. printf("size of long int = %d bytes\n", sizeof(f));
21. printf("size of long long int = %d bytes\n", sizeof(g));
22. printf("size of unsigned long int = %d bytes\n", sizeof(h));
23. printf("size of unsigned long long int = %d bytes\n", sizeof(i));
24. printf("size of signed char = %d bytes\n", sizeof(j));
25. printf("size of unsigned char = %d bytes\n", sizeof(k));
26. printf("size of long double = %d bytes\n", sizeof(l));
27. return 0;
28. }

 Output:

 size of int = 4 bytes

 size of char = 1 bytes

 size of float = 4 bytes

 size of short int = 2 bytes

 size of unsigned int = 4 bytes

 size of long int = 4 bytes

 size of long long int = 8 bytes

 size of unsigned long int = 4 bytes

 size of unsigned long long int = 8 bytes

 size of signed char = 1 bytes

 size of unsigned char = 1 bytes

 size of double = 8 bytes

 size of long double = 16 bytes

 format specifiers

o the format specifiers are used in C for input and output purposes

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 4 of 12

o using this concept the compiler can understand that what type of data is in a variable

during taking input using the scanf() function and printing using printf() function

o following are different format specifier used in the scanf() and printf() functions

Data Type Size (bytes) Format Specifier
int at least 2, usually 4 %d, %i
char 1 %c
float 4 %f
short int 2 usually %hd
unsigned int at least 2, usually 4 %u
long int at least 4, usually 8 %ld, %li
long long int at least 8 %lld, %lli
unsigned long int at least 4 %lu
unsigned long long int at least 8 %llu
signed char 1 %c
unsigned char 1 %c
double 8 %lf
long double at least 10, usually 12 or 16 %Lf

o example (using different format specifiers): a program that uses format specifiers

// L07-C02
1. #include <stdio.h>
2. int main() {
3. int a = 10;
4. char b = ‘A’;
5. float c = 2.25;
6. short int d = -5;
7. unsigned int e = 25;
8. long int f = 25;
9. long long int g = -125;
10. unsigned long int h = 125;
11. unsigned long long int i = 1250;
12. signed char j = ‘B’;
13. unsigned char k = ‘C’;
14. double l = 12.50;
15. long double m = -25.25;
16. printf("int = %d \n", a);
17. printf("char = %c \n", b);
18. printf("float = %f \n", c);
19. printf("short int = %hd \n", d);
20. printf("unsigned int = %u \n", e);
21. printf("long int = %ld \n", f);
22. printf("long long int = %lld \n", g);
23. printf("unsigned long int = %lu \n", h);
24. printf("unsigned long long int = %llu \n", i);
25. printf("signed char = %c \n", j);
26. printf("unsigned char = %c \n", k);
27. printf("double = %lf \n", l);

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 5 of 12

28. printf("long double = %Lf \n", m);
29. return 0;
30. }

 Output:
 int = 10
 char = A
 float = 2.250000
 short int = -5
 unsigned int = 25
 long int = 25
 long long int = -125
 unsigned long int = 125
 unsigned long long int = 1250
 signed char = B
 unsigned char = C
 double = 12.500000
 long double = -25.250000

 escape sequences

o in C, all escape sequences consist of two or more characters, the first of which is the

backslash, \ (called the "Escape character"); the remaining characters determine the

interpretation of the escape sequence

o for example, \n is an escape sequence that denotes a newline character

o there are several types of escape sequence in C to achieve various purposes

 \n (New line): used to shift the cursor control to the new line

 \t (Horizontal tab): used to shift the cursor to a couple of spaces to the right in

the same line

 \a (Audible bell): used to generated a beep indicating the execution of the

program to alert the user

 \r (Carriage Return): used to position the cursor to the beginning of the current

line

 \\ (Backslash): used to display the backslash character

 \’ (Apostrophe or single quotation mark): used to display the single -quotation

mark

 \” (Double quotation mark): used to display the double-quotation mark

 \0 (Null character): used to represent the termination of the string

 \? (Question mark): used to display the question mark (?)

 \nnn (Octal number): used to represent an octal number

 \xhh (Hexadecimal number): used to represent a hexadecimal number

 \v (Vertical tab): used to move curser vertically down

 \b (Backspace): used to move curser on character back

 \e (Escape character):

 \f (Form Feed page break): used to eject current pages from the printer

 operators: an operator is a symbol that tells the compiler to perform specific mathematical or

logical operations in C language

o arithmetic operators: assume A = 10 and B = 20

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 6 of 12

 + adds two operands. A + B  30

 − subtracts second operand from the first. A − B  -10

 * multiplies both operands. A * B  200

 / divides numerator by de-numerator. B / A  2

 % remainder of an integer division. B % A  0

 ++ increases the integer value by one. A++  11

 -- decreases the integer value by one. A--  9

o relational operators: assume A = 10 and B = 20

 == checks if the values of two operands are equal or not. If yes, then the

condition becomes true. (A == B) is not true.

 != checks if the values of two operands are equal or not. If the values are

not equal, then the condition becomes true. (A != B) is true.

 > checks if the value of left operand is greater than the value of right

operand. If yes, then the condition becomes true. (A > B) is not true.

 < checks if the value of left operand is less than the value of right operand.

If yes, then the condition becomes true. (A < B) is true.

 >= checks if the value of left operand is greater than or equal to the value of

right operand. If yes, then the condition becomes true.(A >= B) is not true.

 <= checks if the value of left operand is less than or equal to the value of

right operand. If yes, then the condition becomes true.(A <= B) is true.

o logical operators: assume A = 1 and B = 0

 && called logical AND operator, if both the operands are non-zero, then the

condition becomes true. (A && B) is false.

 || called logical OR operator, if any of the two operands is non-zero, then

the condition becomes true. (A || B) is true.

 ! called logical NOT operator, it is used to reverse the logical state of its

operand. If a condition is true, then Logical NOT operator will make it false.

 !(A && B) is true.

o bitwise operators: assume A = 60 and B = 13

 & binary AND operator copies a bit to the result if it exists in both operands.

 (A & B)  12, i.e., 0000 1100

 | Binary OR Operator copies a bit if it exists in either operand.

 (A | B)  61, i.e., 0011 1101

 ^ Binary XOR Operator copies the bit if it is set in one operand but not both.

 (A ^ B)  49, i.e., 0011 0001

 ~ Binary One's Complement Operator is unary and has the effect of

'flipping' bits. (~A)  ~(60), i.e., -0111101

 << Binary Left Shift Operator. The left operands value is moved left by the

number of bits specified by the right operand. A << 2  240 i.e., 1111 0000

 >> Binary Right Shift Operator. The left operands value is moved right by the

number of bits specified by the right operand. A >> 2  15 i.e., 0000 1111

o assignment operators

 = assigns values from right side operands to left side operand C = A + B will

assign the value of A + B to C

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 7 of 12

 += it adds the right operand to the left operand and assign the result to the

left operand. C += A is equivalent to C = C + A

 -= it subtracts the right operand from the left operand and assigns the result

to the left operand. C -= A is equivalent to C = C - A

 *= it multiplies the right operand with the left operand and assigns the result

to the left operand. C *= A is equivalent to C = C * A

 /= it divides the left operand with the right operand and assigns the result

to the left operand. C /= A is equivalent to C = C / A

 %= it takes modulus using two operands and assigns the result to the left

operand. C %= A is equivalent to C = C % A

 <<= left shift AND assignment operator. C <<= 2 is same as C=C << 2

 >>= right shift AND assignment operator. C >>= 2 is same as C=C >> 2

 &= bitwise AND assignment operator. C &= 2 is same as C = C & 2

 ^= bitwise exclusive OR and assignment operator. C ̂ = 2 is same as C = C ^ 2

 |= bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

o miscellaneous operators

 sizeof() returns the size of a variable. sizeof(a), where a is integer, will return 4

 & returns the address of a variable. &a; returns the actual address of the

variable

 * pointer to a variable, *a;

 ? : conditional expression,if condition is true ? then X : otherwise Y

o operator precedence

 operator precedence determines the grouping of terms in an expression and

decides how an expression is evaluated

 certain operators have higher precedence than others;

 for example, the multiplication operator has a higher precedence than the

addition operator

Category Operator Associativity

postfix (), [], ->, . ,++, - - Left to right

unary +, -, !, ~, ++, - -, (type),*, &, sizeof Right to left

multiplicative *, /, % Left to right

additive +, - Left to right

shift <<, >> Left to right

relational <, <=, >, >= Left to right

equality ==, != Left to right

bitwise AND & Left to right

bitwise XOR ^ Left to right

bitwise OR | Left to right

logical AND && Left to right

logical OR || Left to right

conditional ?: Right to left

assignment =, +=, -=, *=, /=, %=,>>=, <<=, &=, ^=, |= Right to left

comma , Left to right

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 8 of 12

 structured programming

o composing programs as sequences of blocks with a single entry and exit points make them

easier to understand

o this aimed at improving the clarity, quality, and development time of a computer program

by making extensive use of the structured control flow constructs of

 sequence

 selection

 repetition

o for simplicity above control statements could only be combined in two ways

 stacking: joining control statements in a sequence one after another

 nesting: embedding one control statement into another using single entry and

exit principle

o to write a structured program following rules are used

 Rule 1: begin with a simplest flow chart having a start, rectangle (action with

single entry and single exit) and end symbols

 Rule 2: stacking rule: any rectangle (action) can be replaced by two rectangles

(actions) in sequence

 Rule 3: nesting rule: any rectangle (action) can be replaced by any control

statement (sequence, if, if…else, switch, while, do…while or for)

 Rule 4: stacking and nesting may be applied as often as you like and in any order

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 9 of 12

o Rule 4 can help to design larger and more deeply nested structures

o because of the elimination of the goto statement, these building blocks never overlap one

another

o in C language selection is implemented using three ways

 if (single selection)

 if . . . else (double selection)

 switch (multiple selection)

 it is straightforward to prove that simple if statement is sufficient to provide any

form of selection

o in C language repetition is implemented using three ways

 while

 do . . . while

 for

 it is straightforward to prove that simple while statement is sufficient to provide

any form of repetition

o hence, any form of control can be expressed in only the following three forms of controls

 sequence

 if

 while

o similarly only following two forms of combining these controls can produce any

structured program

 stacking

 nesting

 nested control structures

o recall that a nested control structure means to embed one control structure into another

control structure

o for example, repetition control structure could be used inside another repetition control

structure

o while in while nesting

 example (using while nested control statements): a program that prompts user

to enter a number and displays its table at console, if user enters a 0 or a negative

number than exit the program.

// L07-C03

1. int main (void) {

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 10 of 12

2. int counter = 0, number;

3. int sentinel = 1;

4. while (sentinel != 0) {

5. printf(“enter the a number to display its table (<= 0 to exit):\t”);

6. scanf(“%d”, &number);

7. if (number > 0) {

8. counter = 1;

9. while (counter <= 10) {

10. printf(“%d\t*\t%d\t=\t%d\n”, number, counter, number*counter);

11. counter = counter + 1;

12. } // end of inner while

13. } // end of if

14. else {

15. sentinel = 0;

16. } // end else

17. } // end of outer while

18. }

 output/input: enter the a number to display its table (<= 0 to exit): 5

 output: 5 * 1 = 5

 output: 5 * 2 = 10

 output: 5 * 3 = 15

 output: 5 * 4 = 20

 output: 5 * 5 = 25

 output: 5 * 6 = 30

 output: 5 * 7 = 35

 output: 5 * 8 = 40

 output: 5 * 9 = 45

 output: 5 * 10 = 50

 output/input: enter the a number to display its table (<= 0 to exit): 0

 Line 2: define and initialize a counter and a variable to get user input named

counter with value 0, and number to store user’s entered value

 Line 3: define and initialize a sentinel variable named sentinel with value 1

 Line 4: defines a condition on the sentinel variable which would be true (1) if the

value in sentinel variable is not equal to 0

 Line 5&6: prompt user to enter a number and get input from user and store in

variable number

 Line 7&8: if the user’s entered number is greater than zero then set counter

variable equal to 1

 Line 9-12: run the statements in the while control from counter’s value equal to

1 to counter’s value is 10 and print table of the user’s entered number at console

using printf statement

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 11 of 12

 Line 14-16: if the user’s entered number is equal or less than zero then the else

block from lines 14-16 will set the value of the variable named sentinel equal to

zero, which will terminate while condition at line 4

o for in for nesting

 example (using for nested control statements): a program that prompts user to

enter a number and displays a square of ‘*’ at console having dimensions equal

to users entered number

// L07-C04

1. int main (void) {

2. int number;

3. printf(“enter a number:\t”);

4. scanf(“%d”, &number);

5. for (int i=0; i<number; i++) {

6. for (int j=0; j<number; j++) {

7. printf(“ * ”);

8. } // end of inner for

9. printf(“\n”);

10. } // end of outer for

11. }

 output/input: enter a number: 5

 output: * * * * *

 output: * * * * *

 output: * * * * *

 output: * * * * *

 output: * * * * *

 Line 2: define a variable to get user input named number

 Line 3&4: prompt the user to enter a number and take user’s input and store it

into the variable number

 Line 5: outer for repetition is started with for header where a counter variable

named “i” is defined and initialized with value zero, a condition on the variable i

is defined which would be true (1) if the value in “i” variable is less than the value

of user’s entered value (stored in the variable number)

 Line 6: inner for repetition is started with for header where a counter variable

named “j” is defined and initialized with value zero, a condition on the variable j

is defined which would be true (1) if the value in “j” variable is less than the value

of user’s entered value (stored in the variable number)

 Line 6: display * on console and as many times as the value entered by the user

 Line 7: after the termination inner for repetition a new line character is displayed

at console and the control is transferred back to header of the outer for repetition

at line 5

 concepts discussed in the lecture

o literal and constants

LECTURE NOTES - CC-112 PROGRAMMING FUNDAMENTALS PROF. DR. SYED WAQAR UL QOUNAIN

DEPARTMENT OF INFORMATION TECHNOLOGY UNIVERSITY OF THE PUNJAB, LAHORE Page 12 of 12

 decimal, octal, hexadecimal, floating-point literal, numeric literal, character

literal, string literal, constant, const keyword,

o datatypes

 int, float, double, long double, short int, long int, long long int, range, signed,

unsigned, unsigned short int, unsigned long int, unsigned long long int, char,

signed char, unsigned char,

o formatted I/O

 sizeof, format specifiers, escape sequence, \n, \t, \a, \r, \\, \’, \”, \0, \?, \nnn,

\xhh, \v, \b, \f

o operators

 arithmetic operators, relational operators, logical operators, bitwise operators,

assignment operators, miscellaneous operators, operator precedence, unary

operators, shift operators, bitwise operators,

o structured programming
 stacking, nesting, goto statement

