

CC-112L

Programming Fundamentals

Laboratory 12

File Handling

Version: 1.0.0

Release Date: 14-10-2022

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 2 of 18

Contents:

 Learning Objectives

 Required Resources

 General Instructions

 Background and Overview

o Bit Fields

o Enumeration Constants

o Sequential Access

o Random Access

o File Handling in C

 Activities

o Pre-Lab Activity

 Bitwise Operators

 Bit Fields

– Defining Bit Fields

– Unnamed Bit Fields

 Enumeration Constants

 Task 01: Bitwise Operations

 Task 02: Enums

o In-Lab Activity

 Creating a Sequential-Access File

– Pointer to File

– Open a File

– End-of-file Indicator

– Close a File

– File Open Modes

 Read from a Sequential-Access File

 Random-Access File

– Creating a Random-Access File

– Writing Data Randomly

– fseek() function

– Reading Data Randomly

 Task 01: Maximum Digit

 Task 02: Second Largest Word

 Task 03: Word Occurrence

 Task 04: Batsman Average

o Post-Lab Activity

 Task 01: Vigenère Cipher using File Handling

 Submissions

 Evaluations Metric

 References and Additional Material

 Lab Time and Activity Simulation Log

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 3 of 18

Learning Objectives:

 Bitwise Operators

 Bit Fields

 Enumeration Constants

 File Handling in C

Resources Required:

 Desktop Computer or Laptop

 Microsoft ® Visual Studio 2022

General Instructions:

 In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not
allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss
with your Teaching Assistants (TAs) or Lab Instructor.

 Your TAs will be available in the Lab for your help. Alternatively, you can send your queries
via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Teacher Assistants

 Usman Ali bitf19m007@pucit.edu.pk

 Saad Rahman bsef19m021@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:bitf19m007@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 4 of 18

Background and Overview:

Bit Fields:

In C, we can specify the size (in bits) of the structure and union members. The idea of bit-field is to use

memory efficiently when we know that the value of a field or group of fields will never exceed a limit
or is within a small range. Bit fields are used when the storage of our program is limited.

Enumeration Constants:

In C programming, an enumeration type (also called enum) is a data type that consists of integral
constants. To define enums, the “enum” keyword is used.

Sequential Access:

It is the simplest access method. Information in the file is processed in order, one record after the other.
This mode of access is by far the most common.

Random Access:

A random-access file behaves like a large array of bytes stored in the file system. There is a kind of

cursor, or index into the implied array, called the file pointer; input operations read bytes starting at the
file pointer and advance the file pointer past the bytes read.

File Handling in C:

File handling refers to the method of storing data in the C program in the form of an output or input that
might have been generated while running a C program in a data file, i.e., a binary file or a text file .

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 5 of 18

Activities:

Pre-Lab Activities:

Bitwise Operators:

The bitwise operators are used to manipulate the bits of integral operands. Bitwise data manipulations
are machine dependent. The following table summarizes the bitwise operators.

Operator Description

“&” bitwise AND Compare its two operands bit by bit. The bits in the result are set to 1 if
the corresponding bits in the two operands are both 1.

“|” bitwise OR Compare its two operands bit by bit. The bits in the result are set to 1 if at
least one of the corresponding bits in the two operands is 1.

“^” bitwise XOR Compare its two operands bit by bit. The bits in the result are set to 1 if
the corresponding bits in the two operands are different.

“<<” left shift Shifts the bits of the first operand left by the number of bits specified by
the second operand; fill from the right with 0 bits.

“>>” right shift Shifts the bits of the first operand right by the number of bits specified by
the second operand; the method of filling from the left is machine-
dependent when the left operand is negative.

“~” complement All 0 bits are set to 1, and all 1 bit are set to 0. This is often called toggling
the bits.

Suppose two numbers 12 and 25. Their bitwise AND operation will be as follows

12 = 00001100 (In Binary)

25 = 00011001 (In Binary)

Bit Operation of 12 and 25

 00001100

& 00011001

 00001000 = 8 (In decimal)

Now using above numbers in C compiler to perform bitwise AND operation.

 Fig 01. (Bitwise AND Operator)

The output of the above program is following:

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 6 of 18

 Fig 02. (Bitwise AND Operator)

Bit Fields:

You can specify the number of bits in which to store an unsigned or signed integral member of a struct

or union. Known as bit fields, these enable better memory utilization by storing data in the minimum
number of bits required. Bit field members typically are declared as int or unsigned int.

Defining Bit Fields:

Bit fields are variables that are defined using a pre-defined width or size.

struct{

 data_type member_name: width of bit field;

}

Element Description

data_type
It is an integer type that determines the bit-field value which is to
be interpreted.

member_name The member name is the name of the bit field.

width The number of bits in the bit-field.

Following code is an example of a Bit Field.

 Fig 03. (Bit Field)

The output of the above program is as follows:

 Fig 04. (Bit Field)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 7 of 18

The output of month comes out to be negative. What happened behind is that the value of 9 was stored

in 4 bits as 1001. The MSB is a 1, so it’s a negative number and you need to calculate the 2’s

complement of the binary number. By calculating 2’s complement you will arrive at value 0111 which

equivalent to decimal number 7 and since it’s a negative number you will get -7.

Unnamed Bit Fields:

An unnamed bit field is used as padding in a struct. For example, the definition

struct example {

unsigned int a : 13;

unsigned int : 19;

 unsigned int b : 4;

};

uses an unnamed 19-bit field as padding. Nothing can be stored in those 19 bits. Member b (assuming
a four-byte-word computer) is stored in a separate word of memory.

Enumeration Constants:

“enum” keyword for defining a set of integer enumeration constants represented by identifiers. Values

in an enum start with 0, unless specified otherwise, and increment by 1.

For example,

enum months {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

creates the new type enum months in which the identifiers are set to the integers 0 through 11. . To
number the months 1 to 12, use:

enum months {JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC};

 Fig 05. (Enumeration Constants)

In the above program, months from June to December will be printed on the Console.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 8 of 18

 Fig 06. (Enumeration Constants)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 9 of 18

Task 01: Bitwise Operations [Estimated 20 minutes / 20 marks]

Write a C program which:

 Take two integers as an input from the user

 Perform bitwise operations on the given numbers

 Display the output on the Console

Input Output

First Number: 9

Second Number: 8

AND: 8
OR: 9
XOR: 1
Complement of first number: -10
Complement of second number: -9

Task 02: Enums [Estimated 20 minutes / 20 marks]

Write a C program which:

 Define three enumeration members

 Perform bitwise OR operation i.e. first enum | second enum | third enum

 Perform left shift operation on each of the enum member

 Display the output on the Console

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 10 of 18

In-Lab Activities:

Creating a Sequential-Access File:

The following example shows how you can impose your own record structure on a file.

 Fig 07. (Sequential Access File)

Pointer to File:

Line 3 defines cfPtr as a pointer to a FILE structure. A program refers to each open file with a separate
FILE pointer.

Open a File:

Line 5 calls “fopen” to create the file "clients.txt". The file pointer that fopen returns is assigned to
cfPtr.

Function fopen takes two arguments:

 a filename (which can include path information leading to the file’s location)

 a file open mode.

The file open mode "w" indicates fopen should open the file for writing. If the file does not exist and

the file open mode is "w", fopen creates the file. If you open an existing file, fopen discards the file’s

contents without warning. This is a logical error.

End-of-File Indicator:

Line 21 calls “feof” to determine whether the end-of-file indicator is set for stdin. The end-of-file
indicator informs the program that there’s no more data to process.

Write to a File:

Line 22 writes a record as a line of text to the file clients.txt. The “fprintf” function is equivalent to

printf, but fprintf also receives a FILE pointer argument specifying the file to which the data will be

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 11 of 18

written. Function fprintf can output data to the standard output by using stdout as the FILE pointer
argument.

Close a File:

After the user enters end-of-file, the program closes the clients.txt file by calling “fclose”, then

terminates. Function fclose receives the FILE pointer as an argument. If you do not call fclose explicitly,
the file closes when program execution terminates.

The execution of above program is:

 Fig 08. (Sequential Access File)

A file named “clients.txt” will be created at your project path containing the entered data.

 Fig 09. (Sequential Access File)

File Open Modes:

The following table summarizes the file open modes:

Mode Description

r Open an existing file for reading.

w Create a file for writing. If the file already exists, discard the current
contents.

a Open or create a file for writing at the end of a file—this is for write
operations that append data to a file.

r+ Open an existing file for update (reading and writing).

w+ Create a file for reading and writing. If the file already exists, discard the
current contents.

a+ Open or create a file for reading and updating where all writing is done at
the end of the file—that is, write operations append data to the file.

rb Open an existing binary file for reading.

wb Create a binary file for writing. If the file already exists, discard the current
contents.

ab Open or create a binary file for writing at the end of the file (appending).

rb+ Open an existing binary file for update (reading and writing).

wb+ Create a binary file for update. If the file already exists, discard the current
contents.

ab+ Open or create a binary file for update. Writing is done at the end of the
file.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 12 of 18

Read Data from a Sequential Access File:

Now we read the contents of the above written file using “r” file mode as shown in the code below:

 Fig 10. (Reading Data)

The output of the above program is:

 Fig 11. (Reading Data)

Random Access File :

Creating a Random-Access File:

“fopen” function is used to create a file as shown in the example code.

 Fig 12. (Creating a File)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 13 of 18

Writing Data Randomly:

The data is stored randomly in a file using fseek() and fwrite() functions.

fseek() Function:

If you have many records inside a file and need to access a record at a specific position, you need to
loop through all the records before it to get the record.

This will waste a lot of memory and operation time. An easier way to get to the required data can be
achieved using fseek() function.

As the name suggests, fseek() seeks the cursor to the given record in the file. Following is the syntax of
fseek():

fseek(FILE * stream, long int offset, int whence);

The first parameter stream is the pointer to the file. The second parameter is the position of the record
to be found, and the third parameter specifies the location where the offset starts.

Whence Description

SEEK_SET Starts the offset from the beginning of the file.

SEEK_END Starts the offset from the end of the file.

SEEK_CUR Starts the offset from the current location in the file.

The following program writes data to the file "student.txt". It stores data at precise points in the file

using fseek() and fwrite(). The file position pointer is set to a given place in the file by fseek(), and then
the data is written by fwrite().

 Fig 13. (Writing Data randomly)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 14 of 18

Randomly Reading from a file:

fseek() function can be used to find a specific record in a file provided we already know where the
record starts in the file and its size.

To fetch any specified record from the data file, the knowledge of two things are essential:

 Where the data starts in the file.

 Size of the data

Operation Description

fseek(fp, 0, 0) This takes us to the beginning of the file.

fseek(fp, 0, 2)
This takes us to the end of the file.

fseek(fp, N, 0)
This takes us to (N + 1)th bytes in the file.

fseek(fp, N, 1)
This takes us N bytes forward from the current position in the file.

fseek(fp, -N, 1)
This takes us N bytes backward from the current position in the file.

fseek(fp, -N, 2) This takes us N bytes backward from the end position in the file.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 15 of 18

Task 01: Maximum Digit [20 minutes / 20 mark]

Write a C program that:

 Take a number as an input from the user

 Find the largest digit of the number

 Store the digit in a file named your Roll No

Input Output

1893 Maximum Digit: 9

11 Maximum Digit: 1

Task 02: Second Largest [30 minutes / 30 marks]

Create a C program that

 Reads four integers from a file

 Find the second largest among the numbers

 Display the Second Largest number in a new file

Input Output

10 20 30 40 Second Largest Number: 30

10 20 10 13 Second Largest Number: 13

Task 03: Word Occurrence [30 minutes / 30 marks]

Create a C Program that:

 Take a word as an input from the user

 Opens a file in reading mode

 Count the occurrence of the word

 Display the result on the Console

Task 04: Batsman Average [30 minutes / 40 marks]

Create a C Program that:

 Take five strings (Batsman Scores) as input from the user

 Store the scores in a file

 Calculate the average of the score

 Store the Average on the file

Input Output

10 20 30 40 Batsman Average: 25

15 20 10* 30 Batsman Average: 25

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 16 of 18

Post-Lab Activities:

Task 01: Vigenère Cipher using File Handling [Estimated 60 minutes / 50 marks]

Vigenère Cipher is a method of encrypting alphabetic text.

Create a C program that:

 Stores the Vigenère Cipher Table in a file

 Inputs a String from the user

 Inputs a keyword from a user

 Read the Vigenère Cipher table from the file

 Encrypt the string using Vigenère Cipher table

 Decrypt the encrypted string by using Vigenère Cipher

 Display the Encrypted and Decrypted string in a file

Vigenère Cipher Table:

 Fig 24. (Post-Lab Task)

Input Output

MY NAME
THIS IS A MESSAGE

Keyword is bigger than string

THIS IS A MESSAGE

KEYWORD
Encrypted: DLGO WJ D WIQOOXH Decrypted: THIS IS A
MESSAGE

TEXT

KEY
Encrypted: DIVD Decrypted: TEXT

Submit “.c” files named your “Roll No” on Google Classroom.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 17 of 18

Submissions:

 For In-Lab Activity:

 Save the files on your PC.

 TA’s will evaluate the tasks offline.

 For Pre-Lab & Post-Lab Activity:

 Submit the .c file on Google Classroom and name it to your roll no.

Evaluations Metric:

 All the lab tasks will be evaluated offline by TA’s

 Division of Pre-Lab marks: [40 marks]

 Task 01: Bitwise Operations [20 marks]

 Task 02: Enums [20 marks]

 Division of In-Lab marks: [120 marks]

 Task 01: Maximum Digit [20 marks]

 Task 02: Second Largest Number [30 marks]

 Task 03: Word Occurrence [30 marks]

 Task 04: Batsman Average [40 marks]

 Division of Post-Lab marks: [50 marks]

 Task 01: Vigenère Cipher using File Handling [50 marks]

References and Additional Material:

 C Bitwise Operators

https://www.programiz.com/c-programming/bitwise-operators

 Bit Fields

https://www.geeksforgeeks.org/bit-fields-c/

 Enumeration Constants

https://www.programiz.com/c-programming/c-enumeration

 File Handling in C

https://www.programiz.com/c-programming/c-file-input-output

https://www.programiz.com/c-programming/bitwise-operators
https://www.geeksforgeeks.org/bit-fields-c/
https://www.programiz.com/c-programming/c-enumeration
https://www.programiz.com/c-programming/c-file-input-output

CC-112L Programming Fundamentals SPRING 2022

Laboratory 12 – File Handling Page 18 of 18

Lab Time Activity Simulation Log:

 Slot – 01 – 00:00 – 00:15: Class Settlement

 Slot – 02 – 00:15 – 00:30: In-Lab Task

 Slot – 03 – 00:30 – 00:45: In-Lab Task

 Slot – 04 – 00:45 – 01:00: In-Lab Task

 Slot – 05 – 01:00 – 01:15: In-Lab Task

 Slot – 06 – 01:15 – 01:30: In-Lab Task

 Slot – 07 – 01:30 – 01:45: In-Lab Task

 Slot – 08 – 01:45 – 02:00: In-Lab Task

 Slot – 09 – 02:00 – 02:15: In-Lab Task

 Slot – 10 – 02:15 – 02:30: In-Lab Task

 Slot – 11 – 02:30 – 02:45: Evaluation of Lab Tasks

 Slot – 12 – 02:45 – 03:00: Discussion on Post-Lab Task

