

CC-112L

Programming Fundamentals

Laboratory 08

Pointers – I

Version: 1.0.0

Release Date: 05-09-2022

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 2 of 17

Contents:

 Learning Objectives

 Required Resources

 General Instructions

 Background and Overview

o Pointers in C

o Pointer Operators

o Pass by Value

o Pass by Reference

o sizeof Operator

 Activities

o Pre-Lab Activity

 Pointer Variable Definition & Initialization

– Declaring Pointers

– Initializing Pointer

 Pointer Operators

– The Address (&) Operator

– The Indirection (*) Operator

 sizeof Operator

 Task 01: Swap two integers

 Task 02: Elements in Array

o In-Lab Activity

 Pass by Value

 Pass by Reference

 const Qualifiers

– Non-Constant Pointer to Non-Constant Data

– Non-Constant Pointer to Constant Data

– Constant Pointer to Non-Constant Data

– Constant Pointer to Constant Data

 Pointer Arithmetic

– Increment/Decrement Pointer

 Task 01: Boundary Values

 Task 02: Average

 Task 03: Dry Run

 Task 04: Reverse Number

 Task 05: Find the Error

o Post-Lab Activity

 Task 01: Pointer to Pointer and Addresses

 Task 02: Reverse Order

 Submissions

 Evaluations Metric

 References and Additional Material

 Lab Time and Activity Simulation Log

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 3 of 17

Learning Objectives:

 Pointer Variable Definition

 Pointer Variable Initialization

 Pointer Operators

 Passing Arguments to Function by Reference

 sizeof Operator

 Pointer Arithmetic

Resources Required:

 Desktop Computer or Laptop

 Microsoft ® Visual Studio 2022

General Instructions:

 In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not
allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss
with your Teaching Assistants (TAs) or Lab Instructor.

 Your TAs will be available in the Lab for your help. Alternatively, you can send your queries
via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Teacher Assistants

 Usman Ali bitf19m007@pucit.edu.pk

 Saad Rahman bsef19m021@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:bitf19m007@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 4 of 17

Background and Overview:

Pointers in C:

Pointers are special variables that are used to store memory addresses rather than values.

Pointer Operators:

C++ provides two pointer operators, which are Address of Operator “&” and Indirection Operator “*”.

Pass by Value:

Passing by value refers to passing the actual value of the variable into the parameter of calling function.

Pass by Reference:

Passing by reference refers to a method of passing the address of an argument in the parameter of the
calling function.

sizeof Operator:

The sizeof operator is a common operator in C. It is a compile-time unary operator and used to compute

the size of its operand. It returns the size of a variable. It can be applied to any data type, pointer type
variables.

© https://www.tutorialspoint.com/sizeof-operator-in-c

https://www.tutorialspoint.com/sizeof-operator-in-c

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 5 of 17

Activities:

Pre-Lab Activities:

Pointer Variable Definition & Initialization:

Declaring Pointers:

The following statement defines the variable countPtr as an int *, which is a pointer to an integer type
variable

int *countPtr;

This definition is read as “countPtr is a pointer to int” or “countPtr points to a variable of type

int.”

The “*” indicates that the variable is a pointer.

Initializing Pointer:

A pointer may be initialized to NULL, 0 or a memory address of a variable.

 A pointer with NULL value points to nothing

 Pointer initialized to 0 is same as NULL

Pointer Operators:

The Address (&) Operator:

The address operator (&) returns the address of its operand. For example, given the following definition
of y

int y = 5;

the statement “int *yPtr = &y;” initializes pointer variable yPtr with variable y’s address in memory.
yPtr is then said to “pointer to” y.

The Indirection (*) Operator:

Indirection operator (*) is used with a pointer operand to get the value of the variable to which the

pointer points. For example, the following program prints 10, which is the value of a variable y.

Using * in this manner is called “dereferencing a pointer”.

 Fig 01. (Pointer Operators)

Following is the output of the above program.

 Fig 02. (Pointer Operators)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 6 of 17

sizeof Operator:

C provides the unary operator sizeof to determine an objects or type’s size in “bytes”. This operator is

applied at compilation time unless its operand is a variable-length array. Following program shows the
sizeof the standard types, array and pointer.

 Fig. 03 (sizeof Operator)

The output of the above program is as follows.

 Fig. 04 (sizeof Operator)

Task 01: Swap two integers [Estimated 30 minutes / 20 marks]

Create a C program that:

 Takes values of two integers as an input from user

 Swap (interchange) the values of integers using pointer

 Display the integer values after swapping

 Fig. 05 (Pre-Lab Task)

 Submit “.c” file named your “Roll No” on Google Classroom

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 7 of 17

Task 02: Elements in Array [Estimated 15 minutes / 10 marks]

Create a C program that:

 Declare an integer array of size 10

 Initialize the array by taking input from the user

 Display the no of elements in the array using “sizeof Operator”

 Fig. 06 (Pre-Lab Task)

 Submit “.c” file named your “Roll No” on Google Classroom

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 8 of 17

In-Lab Activities:

Pass by Value:

Passing by value refers to passing the actual value of the variable into the parameter of calling function.

An example is shown in the following program.

 Fig. 07 (Pass by Value)

Execution of above code is as follows:

 In line 4, variable “number” is initialized to 5

 In line 5, the value of variable “number” is displayed

 In line 6, square function is called, in which argument is passed by value

 Line 10 to line 13, function returns the square of the number

 In line 7, the value of variable “number” is displayed after the execution of the square function

 Fig. 08 (Pass by Value)

Pass by Reference:

Passing by value refers to passing the actual value of the variable into the parameter of calling function.

An example is shown in the following program.

 Fig. 09 (Pass by Reference)

Execution of above code is as follows:

 In line 4, variable “number” is initialized to 5

 In line 5, the value of variable “number” is displayed

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 9 of 17

 In line 6, square function is called, in which argument is passed by reference

 Line 10 to line 13, function returns the square of the number

 In line 7, the value of variable “number” is displayed after the execution of the square function

 Fig. 10 (Pass by Reference)

const Qualifier with Pointers:

Non-Constant Pointer to Non-Constant Data:

The highest level of data access is granted by a non-constant pointer to non-constant data. The data can

be modified through the dereferenced pointer, and the pointer can be modified to point to other data
items.

Following is an example in which a function uses such a pointer to receive a string argument, then
convert each character to lowercase in the string.

 Fig. 11 (Non-Constant Pointer to Non-Constant Data)

The output of the above program is:

 Fig. 12 (Non-Constant Pointer to Non-Constant Data)

Non-Constant Pointer to Constant Data:

A non-constant pointer to constant data can be modified to point to any data item of the appropriate

type, but the data to which it points cannot be modified. A function receives such a pointer to process

an array argument’s elements without modifying them.

In the following example “ptr” cannot be used to modify the value of the variable to which it points.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 10 of 17

 Fig. 13 (Non-Constant Pointer to Constant Data)

Constant Pointer to Non-Constant Data:

A constant pointer to non-constant data always points to the same memory location (cannot be modified
due to constant pointer) and the data at that location cannot be modified through the pointer.

In the following example, new address cannot be assigned to “ptr” as it is constant.

 Fig. 14 (Constant Pointer to Non-Constant Data)

Constant Pointer to Constant Data:

A constant pointer to non-constant data always points to the same memory location (cannot be modified
due to constant pointer), but the data at that location can be modified through the pointer.

In the following example, new address cannot be assigned to “ptr” as it is constant and “ptr” cannot
be used to modify the value of the variable to which it points.

 Fig. 15 (Constant Pointer to Constant Data)

Pointer Arithmetic:

The following arithmetic operations are allowed for pointers:

 Incrementing (++)

 Decrementing (--)

 Adding integer to pointer (+ or +=)

 Subtracting integer from pointer (- or -=)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 11 of 17

 Subtracting one pointer from another

Increment/Decrement Pointer:

When a pointer is incremented, it points to the next memory location, similarly when it is decremented
it points to previous memory location.

 Fig. 16 (Increment/Decrement Pointer)

The output of the above program is following:

 Fig. 17 (Increment/Decrement Pointer)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 12 of 17

Task 01: Boundary Values [30 minutes / 20 marks]

Write a C program which:

 Take number of data values as input from user with each value

 Declare and initialize two pointers which points to largest and smallest value

 Display the values of the pointers as shown in the table below

Input Output

5
10 7 8 9 12

Largest Value is: 12
Smallest Value is: 7

3
100 87 98

Largest Value is: 100
Smallest Value is: 87

Task 02: Average [20 minutes / 10 marks]

Write a C program which:

 Takes three numbers as average from the user

 Calculates the average using pointers

 Display the average on the Console

Task 03: Dry Run [30 minutes / 20 marks]

Trace the following C program and fill the table below.

 Fig. 18 (In-Lab Task)

Line No Output

10

14

18

21

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 13 of 17

Task 04: Reverse Number [20 minutes / 20 marks]

Create a program in C which

 Takes a number as input from user

 Defines a function ReverseOrder

 Pass the number to function using pass by reference

 Display the reversed number

Sample Output:

 Fig. 19 (In-Lab Task)

Task 05: Find the Error [20 minutes / 10 marks]

Find out the error in the following program:

 Fig. 20 (In-Lab Task)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 14 of 17

Post-Lab Activities:

Task 01: Pointer to Pointer and Addresses [Estimated 60 minutes / 50 marks]

Consider the following code:

s

 Fig. 21 (Post-Lab Task)

Print the following things and fill in the table.

Address of variable var1:

Address of variable var2:
Address of variable var3:
Address of pointer variable p1:
Address of pointer variable q1:
Address of pointer variable r1:
Value at location pointed by variable p1:
Value at location pointed by variable q1:
Value at location pointed by variable r1:
Value at location pointed by variable g:
Value at location pointed by the pointer that is pointed by g:
Address of location pointed by the pointer that is pointed by g:
Address of pointer variable g:

You need to submit following things on Google Classroom:

 Complete code .c file

 Above table filled (Share MS Word file)

 Memory map diagram (Share MS Word file) E.g.

 Fig. 22 (Post-Lab Task)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 15 of 17

Task 02: Reverse Order [Estimated 60 minutes / 30 marks]

Write a C program in which:

 Takes a string as an input from the user

 Make a function named “reverseOrder” that reverses the order of the string

 Display the reversed string

You are not allowed to use the array subscript [] notation.

Input Output

This is reverse program program reverse is This

My Roll No is 100 100 is No Roll My

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 16 of 17

Submissions:

 For Pre-Lab Activity:

o Submit the .c file on Google Classroom and name it to your roll no.

 For In-Lab Activity:

 Save the files on your PC.

 TA’s will evaluate the tasks offline.

 For Post-Lab Activity:
 Submit the .c file on Google Classroom and name it to your roll no.

Evaluations Metric:

 All the lab tasks will be evaluated offline by TA’s

 Division of Pre-Lab marks: [30 marks]

 Swap two integers [20 marks]

 Elements in Array [10 marks]

 Division of In-Lab marks: [80 marks]

 Task 01: Boundary Values [20 marks]

 Task 02: Average [10 marks]

 Task 03: Dry Run [20 marks]

 Task 04: Reverse Number [20 marks]

 Task 05: Find the error [10 marks]

 Division of Post-Lab marks: [80 marks]

 Task01: Pointer to pointer and addresses [50 marks]

 Task02: Reverse Order [30 marks]

References and Additional Material:

 C Pointers

https://www.programiz.com/c-programming/c-pointers

 C Pointers and Functions

https://www.programiz.com/c-programming/c-pointer-functions

https://www.programiz.com/c-programming/c-pointers
https://www.programiz.com/c-programming/c-pointer-functions

CC-112L Programming Fundamentals SPRING 2022

Laboratory 08 – Pointers – I Page 17 of 17

Lab Time Activity Simulation Log:

 Slot – 01 – 00:00 – 00:15: Class Settlement

 Slot – 02 – 00:15 – 00:30: In-Lab Task

 Slot – 03 – 00:30 – 00:45: In-Lab Task

 Slot – 04 – 00:45 – 01:00: In-Lab Task

 Slot – 05 – 01:00 – 01:15: In-Lab Task

 Slot – 06 – 01:15 – 01:30: In-Lab Task

 Slot – 07 – 01:30 – 01:45: In-Lab Task

 Slot – 08 – 01:45 – 02:00: In-Lab Task

 Slot – 09 – 02:00 – 02:15: In-Lab Task

 Slot – 10 – 02:15 – 02:30: In-Lab Task

 Slot – 11 – 02:30 – 02:45: In-Lab Task

 Slot – 12 – 02:45 – 03:00: Discussion on Post-Lab Task

