

CC-112L

Programming Fundamentals

Laboratory 09

Pointers – II

Version: 1.0.0

Release Date: 16-09-2022

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 2 of 19

Contents:

 Learning Objectives

 Required Resources

 General Instructions

 Background and Overview

o Relationship Between Pointers and Arrays

o Array of Pointers

o Function Pointers

 Activities

o Pre-Lab Activity

 Comparing Pointer

 Key points about pointer comparison

 Relationship Between Pointers and Arrays:

 Pointer/Subscript Notation

 Example code of Subscript and pointer notation

 Exercise 1

 String Copying with Arrays and Pointers

 Copying with Array Subscript Notation

 Copying with Pointers and Pointer Arithmetic

 Task 01: Pointers & Addresses

o In-Lab Activity

 Arrays of Pointers

 Example code of Arrays of pointers

 Function Pointers

 Sorting in Ascending or Descending Order

 Function Pointer Parameter

 Task 01: Copying strings

 Task 02: Remove Duplicates from sorted array

 Task 03: Plus one in Integer

o Post-Lab Activity

 Task 01: Array Addressing

 Submissions

 Evaluations Metric

 References and Additional Material

 Lab Time and Activity Simulation Log

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 3 of 19

Learning Objectives:

 Relationship Between Pointers and Arrays

 Array of Pointers

 Function Pointers

Resources Required:

 Desktop Computer or Laptop

 Microsoft ® Visual Studio 2022

General Instructions:

 In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not
allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss
with your Teaching Assistants (TAs) or Lab Instructor.

 Your TAs will be available in the Lab for your help. Alternatively, you can send your queries
via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Lab Instructor Madiha Khalid madiha.khalid@pucit.edu.pk

 Teacher Assistants

 Usman Ali bitf19m007@pucit.edu.pk

 Saad Rahman bsef19m021@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:madiha.khalid@pucit.edu.pk
mailto:bitf19m007@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 4 of 19

Background and Overview:

Relationship Between Pointers and Arrays :

Array in C is used to store elements of same types whereas Pointers are address variables which stores

the address of a variable. Now array variable is also having a address which can be pointed by a pointer

and array can be navigated using pointer. In simple words, array names are converted to pointers. That's

the reason why you can use pointers to access elements of arrays. However, you should remember that

pointers and arrays are not the same. There are a few cases where array names don't decay to pointers.

Array of Pointers:

An array of pointers is an indexed set of variables, where the variables are pointers (referencing a

location in memory). Pointers are an important tool in computer science for creating, using, and

destroying all types of data structures. Pointers are variables which stores the address of another

variable. When we allocate memory to a variable, pointer points to the address of the variable. Unary
operator (*) is used to declare a variable and it returns the address of the allocated memory.

Function Pointers:

Function Pointers point to code like normal pointers. In Functions Pointers, function's name can be used

to get function's address. A function can also be passed as an argument and can be returned from a

function. Function pointers can be useful when you want to create callback mechanism, and need to

pass address of a function to another function. They can also be useful when you want to store an array

of functions, to call dynamically.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 5 of 19

Activities:

Pre-Lab Activities:

Comparing Pointers:

We can compare pointers if they are pointing to the same array. Relational pointers can be used to

compare two pointers. Pointers can’t be multiplied or divided. If pointers are compared using equality

and relational operators it can be done, but such comparisons are meaningful only if the pointers point

to elements of the same array; otherwise, such comparisons are logic errors. Pointer comparisons

compare the addresses stored in the pointers. Such a comparison could show, for example, that one

pointer points to a higher-numbered array element than the other. A common use of pointer comparison
is determining whether a pointer is NULL

Example Code:

 Fig. 01 (Comparing Pointer Example Code)

Output:

 Fig. 02 (Comparing Pointer Example Code Output)

Some Key points about pointer comparison:

 p1<=p2 and p1>=p2 both yield true and p1<p2 and p1>p2 both yield false, if two pointers p1

and p2 of the same type point to the same object or function, or both point one past the end of

the same array, or are both null.

 p1<p2, p1>p2, p1<=p2 and p1>=p2 are unspecified, if two pointers p1 and p2 of the same type

point to different objects that are not members of the same object or elements of the same array

or to different functions, or if only one of them is null.

 If two pointers point to non-static data members of the same object, or to sub objects or array

elements of such members, with same access control then the result is specified.

 The result is unspecified, if two pointers point to non-static data members of the same object
with different access control.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 6 of 19

Relationship Between Pointers and Arrays:

Array in C is used to store elements of same types whereas Pointers are address variables which stores

the address of a variable. Now array variable is also having a address which can be pointed by a pointer

and array can be navigated using pointer. In simple words, array names are converted to pointers. That's

the reason why you can use pointers to access elements of arrays. However, you should remember that

pointers and arrays are not the same. There are a few cases where array names don't decay to pointers.

Arrays and pointers are intimately related and often may be used interchangeably. You can think of an

array name as a constant pointer to the array’s first element. Pointers can be used to do any operation
involving array subscripting. Assume the following definitions:

int b [5];

int *bPtr;

Because the array name b (without a subscript) is a pointer to the array’s first element, we can set bPtr
to the address of the array b’s first element with the statement:

bPtr = b;

This is equivalent to taking the address of array b’s first element as follows:

bPtr = &b [0];

Pointer/Subscript Notation:

Pointers can be subscripted like arrays. If bPtr has the value b, the expression

bPtr [1]

refers to the array element b [1]. This is referred to as pointer/subscript notation.

Example Code:

 Fig. 03 (Pointer & Subscript notation)

Output:

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 7 of 19

 Fig. 04 (Pointer & Subscript Notation Output)

Exercise 1:

 Fig. 05 (Exercise 1)

Write expected output of above code:

String Copying with Arrays and Pointers:

To further illustrate array and pointer interchangeability, let’s look at two string copying functions

copy1 and copy2 in below example code. Both functions copy a string into a character array, but they’re
implemented differently.

Output >

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 8 of 19

 Fig. 06 (Copying string Using Pointer)

Copying with Array Subscript Notation:

Function copy1 uses array subscript notation to copy the string in s2 to the character array s1. The

function defines counter variable i as the array subscript. The for-statement header (line 17) performs

the entire copy operation. The statement’s body is the empty statement. The header specifies that i is

initialized to zero and incremented by one during each iteration. The expression s1[i] = s2[i] copies one

character from s2 to s1. When the null character is encountered in s2, it’s assigned to s1. Since the

assignment’s value is what gets assigned to the left operand (s1), the loop terminates when an element
of s1 receives the null character, which has the value 0 and therefore is false.

Output:

 Fig. 07 (Coping with subscript notation)

Copying with Pointers and Pointer Arithmetic:

Function copy2 uses pointers and pointer arithmetic to copy the string in s2 to the character array s1.

Again, the for-statement header (line 34) performs the copy operation. The header does not include any

variable initialization. The expression *s1 = *s2 performs the copy operation by dereferencing s2 and

assigning that character to the current location in s1. After the assignment, line 34 increments s1 and s2

to point to each string’s next character. When the assignment copies the null character into s1, the loop
terminates.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 9 of 19

Task 01: Pointer & Addresses [Estimated 20 minutes / 20 marks]

Add the appropriate lines of code in the program given above. Print the following things and fill in the
table.

Given Code:

 Fig. 08 (Pre-Lab Task)

Address of variable var1:

Address of variable var2:

Address of variable var3:

Address of pointer variable p1:

Address of pointer variable q1:

Address of pointer variable r1:

Value at location pointed by variable p1:

Value at location pointed by variable q1:

Value at location pointed by variable r1:

Value at location that is pointed by p1

Address of location that is pointed by p1

Submit “.c” file named your “Table” on Google Classroom.

Task 02: Pointer & Addresses [Estimated 20 minutes / 20 marks]

Write a program in C to demonstrate the use of & (address of) and *(value at address) operator.

Expected Output:

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 10 of 19

 Fig. 08 (Pre-Lab Task)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 11 of 19

In-Lab Activities:

Arrays of Pointers:

Let us consider the following example, which uses an array of 3 integers.

 Fig. 09 (Arrays of Pointers)

Output:

 Fig. 10 (Arrays of Pointers Output)

You can also use an array of pointers to character to store a list of strings as follows:

Example Code:

 Fig. 11 (Example Code of Arrays of Pointers)

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 12 of 19

Output:

 Fig. 12 (Example Code of Arrays of Pointers Output)

Function Pointers:

In previous examples an array name is really the address in memory of the array’s first element.

Similarly, a function’s name is really the starting address in memory of the code that performs the

function’s task. A pointer to a function contains the address of the function in memory. Pointers to

functions can be passed to functions, returned from functions, stored in arrays, assigned to other
function pointers of the same type and compared with one another for equality or inequality.

Sorting in Ascending or Descending Order:

To demonstrate pointers to functions, below code presents a modified version of bubble-sort program.

The new version consists of main and functions bubbleSort, swap, ascending and descending. Function

bubbleSort receives a pointer to a function as an argument either function ascending or function

descending in addition to an int array and the array’s size. The user chooses whether to sort the array in

ascending (1) or descending (2) order. If the user enters 1, main passes a pointer to function ascending

to function bubbleSort. If the user enters 2, main passes a pointer to function descending to function
bubbleSort.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 13 of 19

 Fig. 13 (Example Code of Function Pointers)

Output 1:

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 14 of 19

 Fig. 14 (Output of code of Function Pointers)

Output 2:

 Fig. 15 (Output of Code of Function Pointers)

Function Pointer Parameter:

The following parameter appears in the function header for bubbleSort (line 36):

int (*compare) (int a, int b)

This tells bubbleSort to expect a parameter (compare) that’s a pointer to a function, specifically for a

function that receives two int and returns an int result. The parentheses around *compare is required to

group the * with compare and indicate that compare is a pointer. Without the parentheses, the
declaration would have been:

int *compare (int a, int b)

which declares a function that receives two integers as parameters and returns a pointer to an integer.

To call the function passed to bubbleSort via its function pointer, we deference it, as shown in the if

statement at line 43:

if ((*compare) (work[count], work [count + 1])). The call to the function could have been made without

dereferencing the pointer as in

if (compare(work[count], work [count + 1])), which uses the pointer directly as the function name. The

first method of calling a function through a pointer explicitly shows that compare is a pointer to a

function that’s dereferenced to call the function. The second technique makes it appear that compare is

an actual function name. This may confuse someone reading the code who’d like to see compare’s
function definition and finds that it’s never defined.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 15 of 19

Task 01: Copy string [30 minutes / 20 marks]

Write a C program to copy one string to another string using loop. You are not allowed to use inbuilt
function strcpy () in C.

 Input a string from the user.

 Output original and copied string on the console.

Sample Output:

 Fig. 16 (In-Lab Task 01)

Submit “.c” file named your “CopyStr” on Google Classroom.

Task 02: Remove Duplicates from Sorted Array [40 minutes / 30 marks]

Given an integer pointer to array nums of size 10 sorted in increasing order, remove the duplicates in-

place such that each unique element appears only once. The relative order of the elements should be
kept the same.

Since it is impossible to change the length of the array in some languages, you must instead have the

result be placed in the first part of the array nums. More formally, if there are k elements after removing

the duplicates, then the first k elements of nums should hold the final result. It does not matter what you
leave beyond the first k elements.

Return k after placing the final result in the first k slots of nums.

Do not allocate extra space for another array. You must do this by modifying the input array in-place
with O (1) extra memory.

Sample Output:

 Fig. 17 (In-Lab Task 02)

Submit “.c” file named your “Removing” on Google Classroom.

Task 03: Plus One in a integer [40 minutes / 30 marks]

You are given a large integer represented as an integer array to pointer representing digits, where each

digit [i] is the ith digit of the integer. The digits are ordered from most significant to least significant in
left-to-right order. The large integer does not contain any leading 0's.

Increment the large integer by one and return the resulting array of digits.

Sample Output I:

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 16 of 19

 Fig. 18 (In-Lab Task 03)

Sample Output II:

 Fig. 19 (In-Lab Task 01)

Submit “.c” file named your “PlusOne” on Google Classroom.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 17 of 19

Post-Lab Activities:

Task 01: Array Addressing [Estimated 60 minutes / 60 marks]

Part (a):

In main (), write a logic that declares two arrays A and B with sizes as shown below. Array B will be
of type int i.e., it stores integers.

Print the address of location of cells of both arrays.

Your next task is to create a following link between them. You can create a link / point locations to each

other by using pointers concept. That is, A [0] is pointing towards B [1] and so on. At the end, display
the contents of both the arrays.

 Fig. 20 (Post-Lab Task 01)

Part (b)

1. Consider an array A (take input from user) consisting of some fixed number of integers.
2. Iterate through the array (w/o pointer) using a loop, find out and store the indices of elements

that have even integers. The indices must be stored in another array B.
3. 3. Declare an array of pointers C. The cells of this array should point to the respective entries

of array A at indices specified in array B.

 Fig. 20 (Post-Lab Task 01)

Submit “.c” file named your “Addressing” on Google Classroom.

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 18 of 19

Submissions:

 For In-Lab Activity:

 Save the files on your PC.

 TA’s will evaluate the tasks offline.

 For Pre-Lab & Post-Lab Activity:

 Submit the .c file on Google Classroom and name it to your roll no.

Evaluations Metric:

 All the lab tasks will be evaluated offline by TA’s

 Division of Pre-Lab marks: [40 marks]

 Task 01: Pointers & Addresses [20 marks]

 Task 02: Pointers & Addresses [20 marks]

 Division of In-Lab marks: [80 marks]

 Task 01: Copying strings [20 marks]

 Task 02: Remove Duplicates from sorted array [30 marks]

 Task 03: Plus one Integer [30 marks]

 Division of Post-Lab marks: [30 marks]
 Task 01: Array Addressing [30 marks]

References and Additional Material:

 Relationship Between arrays and pointers

https://www.programiz.com/c-programming/c-pointers-arrays

 Array of pointers

https://www.programiz.com/cpp-programming/pointers-arrays

 Function Pointers

https://www.programiz.com/c-programming/c-pointer-functions

https://www.programiz.com/c-programming/c-pointers-arrays
https://www.programiz.com/cpp-programming/pointers-arrays
https://www.programiz.com/c-programming/c-pointer-functions

CC-112L Programming Fundamentals SPRING 2022

Laboratory 09 – Pointers – II Page 19 of 19

Lab Time Activity Simulation Log:

 Slot – 01 – 00:00 – 00:15: Class Settlement

 Slot – 02 – 00:15 – 00:30: Execute C on Visual Studio

 Slot – 03 – 00:30 – 00:45: Execute C on Visual Studio

 Slot – 04 – 00:45 – 01:00: In-Lab Task

 Slot – 05 – 01:00 – 01:15: In-Lab Task

 Slot – 06 – 01:15 – 01:30: In-Lab Task

 Slot – 07 – 01:30 – 01:45: In-Lab Task

 Slot – 08 – 01:45 – 02:00: In-Lab Task

 Slot – 09 – 02:00 – 02:15: In-Lab Task

 Slot – 10 – 02:15 – 02:30: In-Lab Task

 Slot – 11 – 02:30 – 02:45: Evaluation of Lab Tasks

 Slot – 12 – 02:45 – 03:00: Discussion on Post-Lab Task

