

001 Short Questions

A. How we can avoid busy waiting in solution to critical section problem

To avoid busy waiting in the solution to the critical section problem, you can use synchronization
mechanisms like semaphores, mutexes, condition variables, sleep and wakeup mechanisms, or blocking
queues. These allow threads to wait efficiently without actively spinning in a loop.

1.

Semaphore: Semaphores are integer variables that can be accessed by two standard operations,
wait() and signal(). The wait() operation decrements the semaphore value and waits if the value
becomes negative. The signal() operation increments the semaphore value. By using semaphores,
a thread can be made to wait efficiently without actively spinning in a loop.

Mutex: A mutex (short for mutual exclusion) is a synchronization primitive that grants exclusive
access to a resource to only one thread at a time. When a thread acquires a mutex and finds it locked,
it will be put to sleep until the mutex becomes available. This prevents busy waiting.

B. What is resource allocation graph? Explain its usage with examples.
Resource Allocation Graph

The resource allocation graph is the pictorial representation of the state of a system. As its
name suggests, the resource allocation graph is the complete information about all the
processes, which are holding some resources or waiting for some resources.

It also contains the information about all the instances of all the resources whether they are
available or being used by the processes.

In Resource allocation graph, a Circle represents the process while the Resource is
represented by a rectangle. Let us see the types of vertices and edges in detail.

Vertices
v v
Process Vertex Resources Vertex
v v
Single Instance Multiple Instance
u H E H
Eg. CPU Eg. Registers

Vertices are mainly of two types, Resource and process. A different shape will represent
each of them. Circle represents process while rectangle represents resource.

A resource can have more than one instance. Each instance will be represented by a dot
inside the rectangle.

Edges

| !

Assign edge Request edge

Edges in RAG are also of two types, one represents assignment and other represents the
wait of a process for a resource. The above image shows each of them.

Aresource is shown as assigned to a process if the tail of the arrow is attached to an instance
to the resource and the head is attached to a process.

A process is shown as waiting for a resource if the tail of an arrow is attached to the process
while the head is pointing towards the resource.

Resource Resource

Process is requesting Resource is assigned
for a resource to process

Example

Let us consider 3 processes P1, P2 and P3, and two types of resources R1 and R2. The
resources are having 1 instance each.

According to the graph, R1 is being used by P1, P2 is holding R2 and waiting for R1, P3
is waiting for R1 as well as R2.

The graph is deadlock free since no cycle is being formed in the graph.

C. Consider a system that has 40% hit it with 9 msec time to access TLB. If this system
spends double time to access memory, then what will be the Effective Access Time?

To calculate the effective access time (EAT) in this scenario, we need to consider the time it takes
to access data when there's a TLB hit and when there's a TLB miss.
Given:
e TLB hit rate = 40% (0.40)
e TLB access time = 9 milliseconds (0.009 seconds)
e Time to access memory when there's a TLB miss = double the normal time, which means
it will be 2 times the time taken for a TLB hit
Let's denote:
e ThitThit = Time to access memory with TLB hit
e TmissTmiss = Time to access memory with TLB miss
Then, the effective access time (EAT) can be calculated using the following formula:

FAT=(7LPB hit ratex7hit)+((1-7LB hit rate)x7miss)

Given that TmissTmiss is double the time of TAitThit, we have:
Tmiss=2XThit

So, plugging in the given values:

Thit=0.009 seconds

Tmiss=2%0.009=0.018seconds

EAT=(0.40%0.009)+((1-0.40)x0.018)

EAT=(0.40x0.009)+(0.60x0.018)

EAT=0.0036+0.0108

EAT=0.0144seconds

So, the effective access time (EAT) is 0.0144 seconds, or 14.4 milliseconds.

D. If a process has following page table with page size of 1KB. What will be the linear
physical address of a memory location whose logical address is (2, 850).

Page# Frame#

0 16

25

23

N B | W (N |-
B |

To find the linear physical address corresponding to a given logical address, we need to use
the page table entries provided and the page size.

Given:
- Page size = 1KB
- Logical address = (2, 850)

To find the linear physical address:

1. Determine which page the logical address belongs to.

2. Find the frame number corresponding to that page in the page table.

3. Calculate the offset within the page.

4. Combine the frame number and offset to get the linear physical address.

Given the logical address (2, 850):
- Page number = 2
- Offset within the page = 850

Now, let's find the frame number corresponding to page 2 from the page table:
- For page 2, the frame number is 4.

Since the page size is 1KB, the logical address contains the page number and the offset
within the page. To find the linear physical address, we use the formula:

Linear Physical Address=(Frame Number xPage Size)+Offset

Substituting the values:

Linear Physical Address=(4x1KB)+850

Linear Physical Address=(4%1024)+850Linear Physical Address=(4x1024)+850
Linear Physical Address=4096+850Linear Physical Address=4096+850

Linear Physical Address=4946Linear Physical Address=4946

Therefore, the linear physical address corresponding to the logical address (2, 850) is 4946.

E. How compare_and_swap() hardware instruction will be used to solve critical section
problem?

The ‘compare and swap()' (CAS) hardware instruction can be used to implement lock-free
algorithms for solving the critical section problem. In these algorithms, CAS is used to atomically
check and modify a shared variable representing the lock. Threads attempt to acquire the lock by
performing a CAS operation on this variable. If the CAS operation succeeds, meaning that no other
thread has acquired the lock concurrently, the thread enters the critical section. If the CAS
operation fails, indicating that another thread has already acquired the lock, the thread retries or
performs some other action, such as waiting or yielding. CAS provides the necessary atomicity for
implementing lock-free synchronization without the need for locks or mutexes, thus avoiding the
overhead of context switching and potential deadlock situations.

F. Explain the use of STBR and STLR while managing system memory using
segmentation.

In memory management using segmentation, the Segment Table Base Register (STBR) and the
Segment Table Length Register (STLR) are key components of the hardware support for
segmentation.

1. Segment Table Base Register (STBR):
- The STBR holds the base address of the segment table in memory.
- When a program executes, the CPU uses the STBR to locate the segment table in memory.

- By loading the STBR with the starting address of the segment table, the CPU knows where to
find information about each segment of the program.

2. Segment Table Length Register (STLR):
- The STLR specifies the length or size of the segment table.
- It defines the range of memory addresses that the segment table covers.

- When a program accesses memory, the CPU uses the STLR to ensure that the segment table
lookup stays within the bounds of the segment table.

- This prevents segmentation faults or errors caused by accessing memory beyond the allocated
segment table.

Together, the STBR and STLR provide the necessary hardware support for segmentation by
enabling the CPU to efficiently access and manage segment information in memory. They allow
the CPU to translate logical addresses generated by the program into physical addresses by

consulting the segment table, which contains information about the location and size of each
segment in memory.

Q2 Long Questions

A. Consider a system that has 32 megabytes of physical memory Installed. There are
maximum 8k pages of processes each of size 2k, then what will be the size of page-table?
How size of page table will change if we change page size to 4K?

To calculate the size of the page table, we need to consider the number of pages and the size of
each page entry in the page table.

Given:
e Physical memory installed: 32 megabytes
e Maximum 8k pages of processes, each of size 2k
Let's calculate the size of the page table for the initial page size of 2K:
1. Number of Pages:
e Maximum 8k pages means 8 * 1024 pages.
2. Size of Page Entry:

o Since each page is 2K and assuming we need 1 entry per page, the size of each page
entry in the page table is the size of a physical memory address, which depends on
the total physical memory installed.

To calculate the size of the page table, we multiply the number of pages by the size of each page
entry:

Size of Page Table=Number of PagesxSize of Page Entry
Now, let's calculate the size of the page table:
Number of Pages=8+1024=8192 pages

Assuming the physical memory installed is divided evenly among the pages:
Size of Page Entry=Total Physical Memory/Number of Pages

Size of Page Entry=32/8192 MB=4 KB
Size of Page Table=8192 pagesx4 KB=32 MB

So, the size of the page table for the initial page size of 2K is 32 megabytes, which is the same as
the total physical memory installed.

Now, if we change the page size to 4K, let's recalculate the size of the page table:

1. Number of Pages:

o With a page size of 4K, there will be fewer pages required to cover the same amount
of physical memory.

2. Size of Page Entry:

o Since each page is now 4K, the size of each page entry in the page table remains
the same.

Let's calculate the new size of the page table:

Number of Pages=Total Physical Memory/Page Size

Number of Pages= 8192 pages * 4 KB=32 MB

Size of Page Table=8192 pagesx4 KB=32 MBSize of Page Table=8192 pagesx4 KB=32 MB

So, even if we change the page size to 4K, the size of the page table remains the same at 32
megabytes.

B. Consider following code segment which uses fork() Instruction for creation of a new
process. Write how many new processes will be created and what will be the output of the
code.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
#include <iostream.h>
Int main()
{
int pld, pid1;
pld = fork();
cout<< “$$3$$ - ”<<endl;
pld1 = fork();

If (pid1==0)
cout<< “#### - ”<<endl;
else{
cout<< “Pakistan Zindabad ”<<endl;
wait(NULL);
cout<< “Child Terminate”<<endl;
}
return 0;

C.

This code segment creates new processes using the fork() system call. Let's analyze how many

processes will be created and what will be the output.

1. The first fork() call (pid = fork();) creates a new process. Let's call this Process 1.

2. The cout << "$3$$$ - "' << endl; statement will be executed by both the parent process and
the newly created child process. So, both Process 1 and its child will print "$$$$ - ".

3. Now, both Process 1 and its child will continue to execute the code below. The child process
will execute the second fork() call (pid1 = fork();), creating another process. Let's call this
Process 2.

4. The child process (Process 2) will print "#### - ".

5. The parent process (Process 1) will print "Pakistan Zindabad ", then wait for its child
process (Process 2) to terminate. After the child process terminates, it will print "Child
Terminate".

So, the total number of new processes created will be 2: one from the first fork() and another

from the second fork() within the child process.

The output will be:
$$$8$ -

$83S -

Pakistan Zindabad
$83S -

HitHHE -

Pakistan Zindabad
Child Terminate
Child Terminate

Explanation:

e The first two lines with "$$$$ - " are printed by both the parent process and its child created
by the first fork().

o Then, the parent process prints "Pakistan Zindabad " and waits for its child process (Process
2) to terminate.

o In the child process (Process 2), "#### - " is printed.

o Finally, both the parent and child processes print "Child Terminate".

Write reader’s code to solve readers-writers problem while assigning high priority to
reader’s process?

To solve the readers-writers problem while assigning high priority to readers, we can use a solution
that allows multiple readers to access the shared resource simultaneously while ensuring exclusive
access for writers. One common solution is the Readers-Writer Lock.

Here's a simple implementation of a readers-writers solution with high priority given to readers in
C++ using mutex and conditional variables:

#include <iostream>

#include <pthread.h>

using namespace std;

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
pthread cond t cond reader = PTHREAD COND INITIALIZER;
pthread cond tcond writer = PTHREAD COND INITIALIZER;

int readers_count = 0;

bool writing = false;

void *reader(void *arg) {
while (true) {

pthread mutex_lock(&mutex);

// Wait if there is a writer or if writers are waiting

while (writing) {

pthread cond wait(&cond_reader, &mutex);

// Increment readers count and signal other readers
readers count++;
pthread cond broadcast(&cond reader);

pthread mutex unlock(&mutex);

// Read data

pthread mutex_lock(&mutex);

readers_count--;

// Signal writer if no readers are reading

if (readers_count == 0) {

pthread cond signal(&cond_writer);

pthread mutex unlock(&mutex);

// Continue reading

return NULL;

void *writer(void *arg) {
while (true) {

pthread mutex_lock(&mutex);

// Wait if there are readers or a writer

while (readers_count > 0 || writing) {

pthread cond wait(&cond writer, &mutex);

// Set writing flag to true

writing = true;

pthread mutex_unlock(&mutex);

// Write data

pthread mutex lock(&mutex);

// Reset writing flag

writing = false;

// Signal readers

pthread cond broadcast(&cond reader);

pthread cond signal(&cond_writer);

pthread mutex unlock(&mutex);

// Continue writing

return NULL;

int main() {

pthread t readers[5], writers[2];

// Create reader threads

for (inti=0;1<5;i++) {

pthread create(&readers[i], NULL, reader, NULL);

// Create writer threads
for (inti=0;1<2;1++) {

pthread create(&writers[i], NULL, writer, NULL);

// Join threads
for (inti=0;1<5;1++) {
pthread join(readers[i], NULL);
}
for (inti=0;1<2;i++) {

pthread join(writers[i], NULL);

return 0;

}

In this implementation, readers have high priority. They can access the shared resource as long as
there are no writers currently writing or waiting to write. Writers have exclusive access to the
resource; they can only write when there are no readers reading or waiting to read. The solution
uses mutexes and conditional variables to synchronize access to the shared resource and coordinate
between readers and writers.

