

Lab Manual

Operating System Lab
(CC-217-3L)

Faculty of Computing & Information Technology (FCIT)

University of the Punjab, Lahore.

www.pucit.edu.pk

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 1

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand basic concepts of Operating System.

Lab Tasks :

Task 1: What is an Operating System?

Task 2: Which OS is being used in the Lab?

Task 3: What are LINUX distributions? Why there are various distributions of LINUX?

Task 4: What is a Virtual Machine? Differentiate between Guest and Host OS.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 01: Operating System Concepts

Objective(s):

 To understand basic concepts of Operating System.

Tool(s) used:

 Ubuntu

Introduction to Operating System

Operating system is software which performs executive functions. It provides services and controls

sharing of information to the users. We have batch processing, Multi-Programming, Multitasking and

Multithreading operating systems. Modern operating systems for desktop and laptop environments use

operating systems like Windows, LINUX and Solaris.

They have layered architecture, Kernel being the lowest to provide hardware abstraction to upper layers

of operating system, utilities and User interface. The windows and Linux operating systems are shown

in the figure 1 and 2.

Figure 1: Linux Operating System

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Figure 2: Windows Operating System

Windows and Mac OS are predominantly found on personal computing devices such as desktop and

laptop computers. Other operating systems, such as Symbian, are found on small devices such as phones

and PDAs, while mainframes and supercomputers found in major academic and corporate labs use

specialized operating systems such as AS/400 and the Cray OS. Linux, which began its existence as a

server OS and has become useful as a desktop OS, can also be used on all of these devices.

Introduction to LINUX

We will use LINUX operating system for most of our lab work to be able to learn how the operating

systems software is developed to implement various algorithms. Linux is a generic term referring to Unix-

like computer operating systems based on the Linux kernel. Their development is one of the most

prominent examples of free and open source software collaboration; typically all the underlying source

code can be used, freely modified, and redistributed by anyone.

The name "Linux" comes from the Linux kernel, originally written in 1991 by Linus Torvalds. The rest

of the system usually comprises components such as the Apache HTTP Server, the X Window System,

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

the K Desktop Environment, and utilities and libraries from the GNU operating system (announced in

1983 by Richard Stallman).

Many quantitative studies of free / open source software focus on topics including market share and

reliability, with numerous studies specifically examining Linux. The Linux market is growing rapidly,

and the revenue of servers, desktops, and packaged software running Linux was expected to exceed $35.7

billion by 2008.

LINUX File System

A file system is the methods and data structures that an operating system uses to keep track of files on a

disk or partition; that is, the way the files are organized on the disk. The word is also used to refer to a

partition or disk that is used to store the files or the type of the file system.

The difference between a disk or partition and the file system it contains is important. A few programs

(including, reasonably enough, programs that create file systems) operate directly on the raw sectors of a

disk or partition; if there is an existing file system there it will be destroyed or seriously corrupted. Most

programs operate on a file system, and therefore won't work on a partition that doesn't contain one (or

that contains one of the wrong type). Before a partition or disk can be used as a file system, it needs to be

initialized, and the bookkeeping data structures need to be written to the disk. This process is called

making a file system. Figure 3 shows the typical LINUX file system. Linux uses a single hierarchical

directory structure. Everything starts from the root directory, represented by /, and then expands into sub-

directories instead of having so-called 'drives'. The filenames are case sensitive.

Figure 3: LINUX File Systems

javascipt:void(0)

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

 /bin

Directory contains several useful commands that are used by both the system

administrator as well as non-privileged users.

/boot Directory contains the system. Map file as well as the Linux kernel. Lilo places

the boot sector backups in this directory.

/ dev

hda1, hda2 etc, which represent the various partitions on the first master drive of

the system. /dev/cdrom and /dev/fd0 represent your CDROM drive and your

floppy drive. One important characteristic of the Linux file system is that

everything is a file or a directory.

/etc Directory contains all the configuration files for the system.

/home Contains user home directories, which can be found under /home/username.

/lib Contains all the shared libraries that are required by system programs.

/lost+found

Linux should always go through a proper shutdown. Sometimes your system

might crash or a power failure might take the machine down. Either way, at the

next boot, a lengthy filesystem check using fsck will be done. Fsck will go through

the system and try to recover any corrupt files that it finds. The result of this

recovery operation will be placed in this directory.

/mnt This directory usually contains mount points or sub-directories where you mount

your floppy and your CD.

/opt This directory contains all the software and add-on packages that are not part of

the default installation.

/proc This is a special directory on your system.

/root We talked about user home directories earlier and well this one is the home

directory of the user root.

/tmp This directory contains mostly files that are required temporarily.

/usr This is one of the most important directories in the system as it contains all the

user binaries. /usr/src/linux contains the source code for the Linux kernel.

/var This directory contains spooling data like mail and also the output from the printer

daemon. The above content briefs about Linux and the file system of Linux.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Development of LINUX

The Linux kernel was first made available in 1991 after a student named Linus Torvalds finished

developing it as an alternative to the MINIX Operating system. MINIX was an operating system

based off of UNIX, which was developed in 1969 and had become a popular OS within the

education environment and industry. The Linux kernel was free to use and it was quickly taken

up by developers around the world. It wasn’t long before there were several distributions of

operating systems running with the Linux kernel. One of the especially notable projects was the

GNU project, which was started by Richard Stallman in the mid 80’s. Richard Stallman wanted

to help start a community that was built around the idea of free and open software. Stallman

decided the best place to start was with an Operating system, and by 1990 he had completed most

of the GNU project with the exception of the kernel. Thus, when the Linux kernel was made

available, the GNU suite of software was pieced together with the kernel to form the GNU/Linux

operating system. This combined package would go on to be the back bone to many other Linux

distributions. By the end of 1994, Linux version 1.0.0 had been released and the world had begun

to take notice of the ever growing number of distributions.

LINUX popularity and evolution of distributions

As the Linux kernel and its distributions continued to improve and grow in popularity, larger

companies began to offer more and more support for the free OS and the idea of free software in

general. From 1994-1997, Linux began to be picked up in mainstream publications such as wired

magazine as well as gain notice from tradeshows.

The year 1998 was especially fruitful for Linux, with support beginning to come from the Google

search engine in May and software for Linux from companies such as Informix and Oracle in July.

It was also announced during that Intel and Netscape had invested money into the Red Hat

company (the Red Hat distribution was one of the earlier Linux distributions and would go on to

be the back bone to many popular distributions and even end up on board of a submarine). With

more and more improvements on the software, and the release of such notable desktop

environments as KDE and Gnome in the late 90’s and early 2000’s, Linux was beginning to really

take hold of the computer industry.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

Understanding Virtual Machines

A virtual machine is a software computer that, like a physical machine, runs an operating system

and applications. A virtual machine uses the physical resources of the physical machine on which

it runs, which is called the host system. Virtual machines have virtual devices that provide the

same functionality as physical hardware, but with the additional benefits of portability,

manageability, and security. A virtual machine has an operating system and virtual resources that

you manage in much the same way that you manage a physical computer. For example, you install

an operating system in a virtual machine in the same way that you install an operating system on

a physical computer. You must have a CD-ROM, DVD, or ISO image that contains the installation

files from an operating system vendor.

Preparing to Create a New Virtual Machine

You use the New Virtual Machine wizard to create a new virtual machine in Workstation. The

wizard prompts you to make decisions about many aspects of the virtual machine. You should

make these decisions before you start the New Virtual Machine wizard.

Selecting a Virtual Machine Configuration

When you start the New Virtual Machine wizard, the wizard prompts you to select a typical or

custom configuration.

Typical Configuration

If you select a typical configuration, you must specify or accept defaults for a few basic virtual

machine settings.

o How you want to install the guest operating system.

o A name for the virtual machine and a location for the virtual machine files.
o The size of the virtual disk and whether to split the disk into multiple virtual disk files.

o Whether to customize specific hardware settings, including memory allocation, number
of virtual processors, and network connection type.

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 2

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

Page 2 of 38

Objective(s) :

Installation of VMWare and Ubuntu.

Lab Tasks :

Task 1 + 2 : Installation of VMWare

Task 3 + 4 : Installation of Ubuntu

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 02: Installation of VMWare and Ubuntu

Objective(s):

Installation of VMWare and Ubuntu.

Tool(s) used:

Ubuntu

UNIX OPERATING SYSTEM

An operating system is the program that controls all the other parts of a computer system - both the

hardware and the software. Most importantly, it allows you to make use of the facilities provided by the

system. Example of operating system are Windows XP, Windows NT, UNIX, Linux, ..etc.

UNIX is an operating system which was first developed in the 1960s, and has been under constant

development ever since. By operating system, we mean the suite of programs which make the computer

work. It is a stable, multi-user, multi-tasking system for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft Windows which

provides an easy to use environment. However, knowledge of UNIX is required for operations which

aren't covered by a graphical program, or for when there is no windows interface available, for

example, in a telnet session.

Different Versions of Unix

There are many different versions of UNIX, although they share common similarities. The most popular

varieties of UNIX are:

Sun Solaris,

GNU/Linux, and
MacOS X.

UBUNTU Operating System

Ubuntu is a Debian-based Linux operating system for personal computers, tablets and smartphones,

where Ubuntu Touch edition is used; and also runs network servers, usually with the Ubuntu Server

edition, either on physical or virtual servers (such as on mainframes) or with containers, that is with

enterprise-class features; runs on the most popular architectures, including server-class ARM-based.

https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Tablet_computers
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Ubuntu_Touch
https://en.wikipedia.org/wiki/Network_servers
https://en.wikipedia.org/wiki/Ubuntu_Server
https://en.wikipedia.org/wiki/Ubuntu_variants
https://en.wikipedia.org/wiki/Physicalization
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Mainframe
https://en.wikipedia.org/wiki/Operating-system-level_virtualization

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Installation of UBUNTU

The installation system is easy to use even if you lack previous knowledge of Linux or computer networks.

If you select default options, Ubuntu provides a complete desktop operating system, including

productivity applications, Internet utilities, and desktop tools. Ubuntu Workstation is a reliable, user-

friendly, and powerful operating system for your laptop or desktop computer. It supports a wide range of

developers, from hobbyists and students to professionals in corporate environments.

Installing VMware Tools

The following are general steps used to start the VMware Tools installation in most VMware products.

Certain guest operating systems may require different steps, but these steps work for most operating

systems. Links to more detailed steps for different operating systems are included in this article. Make

sure to review the VMware documentation for the product you are using.

VMware develops virtualization Software. Virtualization software creates an abstraction layer over

computer hardware that allows the hardware elements of a single computer processors, memory, storage,

and more to be divided into multiple virtual computers, commonly called virtual machines (VMs). Each

virtual machine runs its own operating system (OS) and behaves like an independent computer, even

though it is running on a portion of the actual underlying computer hardware. A VM is a software-based
representation of a physical computer. An operating system (OS) running in a VM is called a guest OS.

http://www.vmware.com/support/pubs/

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Method 01: Setting up Ubuntu with Vmware

1. Installing VMware Workstation from given below link. There are two options for downloading

one is Windows and other for Linux.

https://customerconnect.vmware.com/en/downloads/details?downloadGroup=WKST-

PLAYER-1624&productId=1039&rPId=91446

https://customerconnect.vmware.com/en/downloads/details?downloadGroup=WKST-PLAYER-1624&productId=1039&rPId=91446
https://customerconnect.vmware.com/en/downloads/details?downloadGroup=WKST-PLAYER-1624&productId=1039&rPId=91446

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

2. Run the VMware downloaded File and Click on Next to the Installation wizard.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

3. Accept user license agreement and click on next.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

4. Specify the Installation directory. You can also enable Enhance keyboard driver here. Click Next

to continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

5. You can enable product startup and join the VMware Customer experience Improvement program

here. Click Next to Continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

6. Select the shortcuts you want to create for easy access to VMware Workstation. Click Next to

Continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

11 | P a g e

7. Click Install button to start the installation.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

12 | P a g e

8. Installation will take just few seconds to complete. Click finish.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

13 | P a g e

9. Now you can start the VMware Workstation Player by clicking on the shortcut on Desktop. Below

is the home screen of the VMware Workstation player.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

14 | P a g e

Install Ubuntu Linux on VMWare Workstation

1. Open the VMware Workstation Player after installation. Create a new Virtual Machine.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

15 | P a g e

2. Select ubuntu iso file and click on next to continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

16 | P a g e

3. Select Linux and version of the Linux.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

17 | P a g e

4. Name the virtual machine.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

18 | P a g e

5. Provide credentials for new virtual machine. And click on next to continue.

Note: remember these credentials for future login.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

19 | P a g e

6. Set name for the new virtual machine. And click on next to continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

20 | P a g e

7. Use recommended settings but you can reduce its size. click on next to continue.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

21 | P a g e

8. Click on finish to complete the setup.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

22 | P a g e

9. Play virtual machine. It will take some time for installation.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

23 | P a g e

10. Provide the password as provided at step 5.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

24 | P a g e

11. Welcome to Ubuntu Virtual Machine

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

25 | P a g e

Install G++ the C++ Compiler on Ubuntu VMWare

The GNU Compiler Collection (GCC) is a collection of compilers and libraries for C, C++. Many open-

source projects, including the GNU tools and the Linux kernel, are compiled with GCC. To able to add

new repositories and install packages on your Ubuntu system, you must be logged in as root or user with

sudo privileges.

Installing G++ on Ubuntu

The default Ubuntu repositories contain a meta-package named build-essential that contains the GCC

compiler and a lot of libraries and other utilities required for compiling software.

1. Start by updating the packages list:

$ sudo apt update

2. Install the build-essential package by typing:

$ sudo apt install build-essential

3. Check the version of g++ compiler by following command.

$ g++ --version

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

26 | P a g e

Installing VSCode on Ubuntu

1. Install snap inorder to download latest version of vs code by typing.

$ sudo apt-get install snap

2. Install VS code by following command.

$ sudo snap install –classic code

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

27 | P a g e

Basic C++ Program
let’s create hello world C++ program. Save the following code as hello.cpp text file and run it. Perform

the steps below.

1. Create a text file hello.cpp by following command and write simple code as shown in figure

$ nano hello.cpp

2. Close the editor and compile it by using

$ program-source-code.cpp -o executable-file-name

3. To run or execute the program use following command

$./executable-file-name

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

28 | P a g e

 Method 02: Install Ubuntu on WSL2 on Windows 10

https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview

Windows Subsystem for Linux (WSL) allows you to install a complete Ubuntu terminal environment

in minutes on your Windows machine, allowing you to develop cross-platform applications without

leaving Windows.

1. Search for Windows PowerShell in your Windows search bar, then select Run as

administrator.

https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

29 | P a g e

2. At the command prompt type:

wsl –install

And wait for the process to complete. For WSL to be properly activated, you will now need to restart

your computer.

3. WSL supports a variety of Linux distributions, including the latest Ubuntu release, Ubuntu 20.04

LTS and Ubuntu 18.04 LTS. You can find them by opening the Microsoft store app and searching for

Ubuntu. Choose the distribution you prefer and then click on Get as shown in the following screenshot:

4. Ubuntu will then install on your machine.
5. There is a single command that will install both WSL and Ubuntu at the same time. When

opening PowerShell for the first time, simply modify the initial instruction to:
wsl --install -d ubuntu

This will install both WSL and Ubuntu! Don’t forget to restart your machine before continuing.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

30 | P a g e

6. Once installed, you can either launch the application directly from the store or search
for Ubuntu in your Windows search bar.

7. Once Ubuntu has finished its initial setup you will need to create a username and password (this

does not need to match your Windows user credentials).

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

31 | P a g e

8. Finally, it’s always good practice to install the latest updates with the following commands,
entering your password when prompted.

sudo apt update

Then

sudo apt upgrade

Press Y when prompted.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

32 | P a g e

Install G++ the C++ Compiler and VS Code on Ubuntu WSL2

The GNU Compiler Collection (GCC) is a collection of compilers and libraries for C, C++. Many open-

source projects, including the GNU tools and the Linux kernel, are compiled with GCC. To able to add

new repositories and install packages on your Ubuntu system, you must be logged in as root or user with

sudo privileges.

Installing G++ on Ubuntu

Use following commands on Ubuntu to install compilers for running C++ programs on Ubuntu.

3. Start by updating the packages list:

$ sudo apt update

4. Install the build-essential package by typing:

$ sudo apt install build-essential

5. Check the version of g++ compiler by following command.

$ g++ --version

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

33 | P a g e

Installing VSCode on Ubuntu

6. Install snap inorder to download latest version of vs code by typing.

$ sudo apt-get install snap

7. Install VS code by following command.

$ sudo snap install –classic code

8. Let’s make a directory Codes on Desktop. Make and open a new file of VS Code in the Codes

directory by following command

$ code .

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

34 | P a g e

9. In Code directory, write a simple hello world program and save the file as .cpp file.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

35 | P a g e

10. Install the C++ extensions and run the program using g++ compiler on terminal present in vs code.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

36 | P a g e

11. In order to compile, code open ubuntu terminal. Write following in the vs code terminal and press

enter. Ubuntu console will be opened in the vscode. As shown in the picture.

wsl

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

37 | P a g e

12. Hello.cpp is present in downloads in windows whose address is “/mnt/c/users/Dell/downloads”.

We will change directories using cd.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

38 | P a g e

13. Use following command to compile the hello.cpp.

g++ Hello.cpp -o h

This command will create a object file of Hello.cpp named h. use following to run this object file/

executable. As shown in the figure.

./h

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 3

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To study and execute the commands in Linux.

Lab Tasks :

Task 1 : Execute the Date Commands and write the output.

Task 2: Execute the below mentioned LINUX Commands and generate output.

Task 3 : Execute the below File Commands and write the output.

Task 4 : Execute FILTERS AND PIPES commands and write the output

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 03: LINUX Commands

Objective(s):

 To study and execute the commands in Linux.

Tool(s) used:

Ubuntu

General Purpose utility LINUX Commands

Task 01 Execute the Date Commands and write the output.

This command is used to display the current data and time.

Syntax: $date

 Output:

Options:

a = Abbrevated weekday.
A = Full weekday.
b = Abbrevated month.
B = Full month.

c = Current day and time.

C = Display the century as a decimal number.
d = Day of the month.
D = Day in “mm/dd/yy” format
h = Abbrevated month day.
H = Display the hour.
m = Month of the year.
M = Minute.
P = Display AM or PM
S = Seconds
T = HH:MM:SS format
y = Display the year in 2 digit.
Y = Display the full year.
Z = Time zone.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

To change the format:

Syntax: $date +%H-%M-%S

 Output:

Calendar Command

This command is used to display the calendar of the year or the particular month of
calendar year.

Syntax

$cal year

$cal month year

Here the first syntax gives the entire calendar for given year & the second Syntax gives
the calendar of reserved month of that year.

 Output:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 02 Execute the below mentioned LINUX Commands and generate output.

Echo Command

This command is used to print the arguments on the screen.

 Syntax: $echo text

 Output:

Banner Command

It is used to display the arguments in „#‟ symbol.

 Syntax: $banner <arguments>

Output:

‘ who’ Command

It is used to display who are the users connected to our computer currently.

 Syntax: $who – option’s

Options

 H–Display the output with headers.

 b–Display the last booting date or time or when the system was lastely rebooted.

Output:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

‘whoami’ Command

Display the details of the current working directory.

 Syntax: $whoami

Output:

‘Binary’ Calculator Command

It will change the „$‟ mode and in the new mode, arithmetic operations such as +,-

,*,/,%,n,sqrt(),length(),=, etc can be performed. This command is used to go to the

binary calculus mode.

 Syntax: $bc operations ^d

 1 base – input base

 0 base – output base are used for base conversions.

 Base: Decimal = 1 Binary = 2 Octal = 8 Hexa = 16

Output:

‘CLEAR’ Command

It is used to clear the screen.

 Syntax: $clear

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Task 03 Execute the below File Commands and write the output.

Create a File

To create a new file in the current directory we use CAT command.

Syntax:

$cat > filename.

The > symbol is re-directory we use cat command.

 Output:

Display A File

To display the content of file mentioned we use CAT command without “>‟ operator.

Syntax:

$cat <filename.

Options –s = to neglect the warning /error message.

Output:

Copying Contents

To copy the content of one file with another. If file does not exist, a new file is created
and if the file exists with some data then it is appended.

Syntax:

 $ cat source filename >> destination filename it is to avoid overwriting.

Options: -n content of file with numbers included with blank lines.

Syntax: $cat –n filename

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

 Output:

Copying Contents From One File To Another

To copy the contents from source to destination file. so that both contents are same.

 Syntax

$cp source filename destination filename

Output:

MOVE Command

To completely move the contents from source file to destination file and to remove the
source file.

Syntax: $ mv source filename destination filename

 Output:

REMOVE Command

To permanently remove the file we use this command.

Syntax: $rm filename

 Output:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

WORD Command

To list the content count of no of lines, words, characters.

Syntax: $wc filename

 Options:

 -c – to display no of characters. -l – to display only the lines.
 -w – to display the no of words.

Output:

PAGE Command

This command is used to display the contents of the file page wise & next page can be
viewed by pressing the enter key.

Syntax: $pg filename

 Output:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

Task 04 Execute FILTERS AND PIPES commands and write the output

HEAD

It is used to display the top ten lines of file.

Syntax: $head filename

 Output:

TAIL

This command is used to display the last ten lines of file.

Syntax: $tail filename

 Output:

SORT

This command is used to sort the data’s in some order.

Syntax: $sort filename

 Output:

PIPE

It is a mechanism by which the output of one command can be channeled into the input

of another command.

Syntax: echo 1+1|bc

Output:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

11 | P a g e

TR

The tr filter is used to translate one set of characters from the standard inputs to another.

Syntax: $tr “[a-z]” “[A-Z]”

Output:

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 4

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand working with VIM Editor.

Lab Tasks :

Task 1 : Familiarity with Vi Editor.

Task 2: Compiling and executing a C++ program in VIM

Task 3 : You can convert temperature from degrees Celsius to degrees Fahrenheit by multiplying

by 9/5 and adding 32. Write a program that allows the user to enter a floating-point number

representing degrees Celsius, and then displays the corresponding degrees Fahrenheit.

Task 4 : Write and run a program that simulates a simple calculator. It reads two integers and a

character. If the character is a +, the sum is printed; if it is a -, the difference is printed; if

it is a *, the product is printed; if it is a /, the quotient is printed; and if it is a %, the

remainder is printed.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 04: Editor Commands

Objective(s):

To understand working with VIM Editor.

Tool(s) used:
Ubuntu, VIM Editor

VI Editor

The Vi editor is a visual editor used to create and edit text, files, documents and programs. It displays the

content of files on the screen and allows a user to add, delete or change part of text. There are three modes

available in the Vi editor, they are

1. Command mode

2. Input (or) insert mode.

Task 01 Familiarity with Vi Editor.

Starting Vi

The Vi editor is invoked by giving the following commands in LINUX prompt.

Syntax: $vi <filename> (or) $vi

This command would open a display screen with 25 lines and with tilt (~) symbol at the

start of each line. The first syntax would save the file in the filename mentioned and for

the next the filename must be mentioned at the end.

Options: vi +n <filename> - this would point at the nth line (cursor pos).

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Inserting and Replacing Commands

To move editor from command node to edit mode, you have to press the <ESC> key. For inserting and

replacing the following commands are used.

ESC a Command

This command is used to move the edit mode and start to append after the current

character.

Syntax: <ESC>

ESC A Command

This command is also used to append the file, but this command append at the end of

current line.

Syntax: <ESC> A

ESC i Command

This command is used to insert the text before the current cursor position.

Syntax: <ESC> i

ESC I Command

This command is used to insert at the beginning of the current line.

Syntax: <ESC> I

ESC o Command

This command is insert a blank line below the current line & allow insertion of

contents.

Syntax: <ESC> o

ESC O Command

This command is used to insert a blank line above & allow insertion of contents.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Syntax: <ESC> O

ESC r Command

This command is to replace the particular character with the given characters.

Syntax: <ESC> rx Where x is the new character.

ESC R Command

This command is used to replace the particular text with a given text.

Syntax: <ESC> R text

<ESC> S Command

This command is used to replace a current line with group of characters.

Syntax: <ESC> S

Cursor Movement in Vi

<ESC> h

This command is used to move to the previous character typed. It is used to move to left

of the text. It can also use to move character by character (or) a number of characters.

Syntax:

 <ESC> h - to move one character to left.

 <ESC> nh - to move “n” character to left.

<ESC> l

This command is used to move to the right of the cursor (i.e.) to the next character. It can

also be used to move the cursor for a number of characters.

Syntax:

 <ESC> l – single character to right.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

 <ESC> nl – “n” characters to right.

<ESC> j

This command is used to move down a single line or a number of lines.

Syntax:

 <ESC> j – single down movement.

 <ESC> nj – “n” times down movement.

<ESC> k

This command is used to move up a single line or a number of lines.

Syntax:

 <ESC> k – single line above.

 <ESC> nk – “n” lines above.

Enter (OR) N Enter

This command will move the cursor to the starting of next lines or a group of lines

mentioned.

Syntax:

 <ESC> enter

 <ESC> n enter

<ESC> + Command

This command is used to move to the beginning of the next line.

Syntax:

 <ESC> +

 <ESC> n+

<ESC> - Command

This command is used to move to the beginning of the previous line.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Syntax:

 <ESC> -

 <ESC> n-

<ESC> 0

This command will bring the cursor to the beginning of the same current line.

Syntax: <ESC> 0

<ESC> $

This command will bring the cursor to the end of the current line.

Syntax: <ESC> $

<ESC> ^

This command is used to move to first character of first lines.

Syntax: <ESC> ^

<ESC> b Command

This command is used to move back to the previous word (or) a number of words.

Syntax:

 <ESC>b

 <ESC>nb

<ESC> e Command

This command is used to move towards and replace the cursor at last character of the

word (or) no of words.

Syntax:

 <ESC> e

 <ESC>ne

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

<ESC> w Command

This command is used to move forward by a single word or a group of words.

Syntax:

 <ESC> w

 <ESC> nw

Deleting The Text From Vi

<ESC> x Command

To delete a character to right of current cursor positions, this command is used.

Syntax:

 <ESC> x

 <ESC> nx

<ESC> X Command

To delete a character to left of current cursor positions, this command is used.

Syntax:

 <ESC> X

 <ESC> nX

<ESC> dw Command

This command is to delete a single word or number of words to right of current cursor

position.

Syntax:

 <ESC> dw

 <ESC> ndw

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

db Command

This command is to delete a single word to the left of the current cursor position.

Syntax:

 <ESC> db

 <ESC> ndb

<ESC> dd Command

This command is used to delete the current line (or) a number of lines below the current

line.

Syntax:

 <ESC> dd

 <ESC> ndd

<ESC> d$ Command

This command is used to delete the text from current cursor position to last character of

current line.

Syntax: <ESC> d$

SAVING AND QUITING FROM Vi

<ESC> w Command

To save the given text present in the file.

Syntax: <ESC>w

<ESC> q! Command

To quit the given text without saving.

Syntax: <ESC>:q!

<ESC> wq Command

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

This command quits the vi editor after saving the text in the mentioned file.

Syntax: <ESC>:wq

<ESC> x Command

This command is same as “wq” command it saves and quit.

Syntax: <ESC>:x

<ESC> q Command

This command would quit the window but it would ask for again to save the file.

Syntax: <ESC>: q

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

11 | P a g e

Task 2 Compiling and executing a C++ program in VIM

Write and save the program in Vi:

Open a simple text editor Vi, command line code editor. Create new File – hello.cpp (.cpp

extension is used to indicate that it’s a c++ program). Then write a simple HELLO WORLD

program and save it.

#include<iostream>

void main(){

cout<<"Hello World!\n";

}

Compile the program

 Install g++ Compiler from Synaptic manager or by writing the following commands in

terminal.

 sudo apt-get install g++

 g++ hello.cpp

If there is no syntax/semantic error in you program then the compiler will successfully generate

an executable file, otherwise fix the problem in your code.

Execute the program

To execute the program, you need to run –

 ./a.out

Task 3 You can convert temperature from degrees Celsius to degrees Fahrenheit by multiplying by 9/5

and adding 32. Write a program that allows the user to enter a floating-point number representing degrees

Celsius, and then displays the corresponding degrees Fahrenheit.

Task 4 Write and run a program that simulates a simple calculator. It reads two integers and a character.

If the character is a +, the sum is printed; if it is a -, the difference is printed; if it is a *, the product is

printed; if it is a /, the quotient is printed; and if it is a %, the remainder is printed.

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 5

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To study and execute the Linux Shell Programming.

Lab Tasks :

Task 1 : Write the output of the programs given.

Task 2: Write the output of the arithmetic programs provided in the lab.

Task 3 : Write the output of the following Control Structures.

Task 4 : Write a program to enter the numbers till the user wants and at the end it should display

the maximum and minimum number entered.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 05: LINUX Shell Programming - I

Objective(s):

To understand VIM Editor.

Tool(s) used:
Ubuntu, VIM Editor

Introduction

Shell programming is a group of commands grouped together under single filename.

After logging onto the system a prompt for input appears which is generated by a

Command String Interpreter program called the shell. The shell interprets the input,

takes appropriate action, and finally prompts for more input. The shell can be used

either interactively - enter commands at the command prompt, or as an interpreter to

execute a shell script. Shell scripts are dynamically interpreted, NOT compiled.

Common Shells

C-Shell - csh

The default on teaching systems Good for interactive systems Inferior programmable

features.

Bourne Shell

 bash or sh - also restricted shell – bsh (The Bourne Again Shell) It was written by Steve

Bourne. Over the years the original Bourne Shell has been expanded, but it remains the basic

shell provided in many commercial versions of Linux.

Korn Shell

It was written by David Korn This shell extended many features of Bourne Again Shell

and added many new features.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Thomas C-Shell - tcsh

The TC Shell performs the same functions as Bourne Again Shell. It is an interactive command line

interpreter as well as for high level programming languages.

Shell Keywords

echo, read, if fi, else, case, esac, for , while , do , done, until , set, unset, readonly, shift,

export, break, continue, exit, return, trap , wait, eval ,exec, ulimit , umask.

General Shell Terminologies

The shebang line or hashbang #!

The “shbang” line is the very first line of the script and lets the kernel know what shall

will be interpreting the lines in the script. The shbang line consists of #! Followed by the

full pathname to the shell, and can be followed by options to control the behavior of

shell.

Example

#!/bin/bash

Comments

Comments are descriptive material preceded by a # sign. They are ineffect until the end

of a line and can be started anywhere on the line.

Example

#This text is not interpreted by the shell.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

FIRST “HELLO WORLD” SHELL PROGRAM

Step 1 Open VIM with the filename.sh extension.

Step 2 Write the Hello World Program

 #!bin/bash
 #YOUR FIRST HELLO WORLD PROGRAM
 echo ‘Hello World!’

Step 3 Execution of SHELL Script:

By using change mode

command

$ chmod u + x hello.sh

$./hello.sh

Shell Variables

A variable is something to which we assign a value. The value assigned could be a

number, text, or any data type.

Rules

 A variable name is any combination of alphabets, digits and an underscore.

 No commas or blanks are allowed within a variable name.

 The first character of a variable name must either be an alphabet or and

underscore.

 Variables names should be of any reasonable length.

Shell Variables

1. PATH - Directory paths to search for commands.

2. HOSTNAME - The name of the computer.

3. USER - The user id of the user running this shell.

4. SHELL - The shell currently is used.

5. TERM - The type of terminal being used.

6. PS1 - The prompt to print when then shell is ready for another command.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

Task 1 Write the output of the below programs.

i) #!/bin/bash
 #Variable Assignment & Accessing

echo "Variable Name : "
Name="Operating System"
echo $Name

OUTPUT

ECHO Statement

Similar to the output statement. To print output to the screen, the echo command is used.

Syntax: Echo “String” (or) echo $ b (for variable).

Example: echo "What is your name?"

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

READ Statement

To get the input from the user.

Syntax: read x y (no need of commas between variables)

Reading user input: The read command takes a line of input from the user and assigns

it to a variable(s) on the right-hand side. The read command can accept multiple

variable names. Each variable will be assigned a word.

ii) #!/bin/bash

#Input from user

echo "Enter your name"

read NAME

echo "Enter your age"

read AGE

echo "Enter your enrollment"

read ENROLLMENT

echo "Hello $NAME, Your age is : $AGE Your enrollment is :

$ENROLLMENT"

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

iii) #!/bin/bash
#readonly Variables

echo "Readonly Variables"
Name=”David”
readonly Name
Name=’John’

OUTPUT

iv) #!/bin/bash
echo "Unset Variables : "
Name=”John”
unset Name
echo $Name

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

Wildcards

There are some characters that are evaluated by the shell in a special way. They are

called shell meta characters or “Wildcards. These characters are neither number nor

letters.

Example

 *,?,[],$

 $$echo $$ -- It represents process ID Number, or PID of the current shell

The following table shows a number of special variables that can be used in shell scripts.

Variable Description

$0 The filename of the current script

$n These variables correspond to the arguments with which a script is

invoked.

$# The number of arguments supplied to a script.

$* All arguments are double quoted. If a script receives two

arguments $* is equivalent to $1,$2

$@ All arguments are individually double quoted, equivalent to $1,$2

$$ Shows the number of current shell.

$! The process number of last background command.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

v) #!/bin/bash
#Unix Special Commands

echo "File Name = $0"
echo "First Parameter = $1"
echo "Second Parameter = $2"
echo "Quoted Values = $@"
echo "Quoted Values = $*"
echo "Total number of parameters = $#"

OUTPUT

vi) #!/bin/bash

#Special Commands
echo "File Name = $0"
echo "First Parameter = $1"
echo "Second Parameter = $2"
echo "Quoted Values = $@"
echo "Quoted Values = $*"
echo "Total number of parameters = $#"
echo $?

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

11 | P a g e

EXPRESSION Command

Arithmetic Operations

To perform all arithmetic operations. The Bourne shell does not support arithmetic.

LINUX/Linux commands must be used to perform calculations.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

12 | P a g e

Task 2 Write the output of the following arithmetic programs

#!/bin/bash
var1=10
var2=20
add=$(expr $var1 + $var2)
sub=$(expr $var1 - $var2)
multi=$(expr $var1 * $var2)
div=$(expr $var1 / $var2)
mod=$(expr $var1 % $var2)
echo "Addition : $add"
echo "Subtraction : $sub"
echo "Multiplication : $multi"
echo "Division : $div"
echo "Modulus : $mod"

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

13 | P a g e

Operators

The Bourne shell uses the built- in test command operators to test numbers and strings.

Example

 Equality:

= string
!= string

-eq number

-ne number

 Logical:

-a and
-o or
! not

 Relational:
-gt greater than
-ge greater than, equal to

-lt less than
-le less than, equal to

 Arithmetic:

+, -, *, /, %

Control Structures

Unix Shell supports conditional statements which are used to perform different actions

based on different conditions. Two decision making statements are mentioned below:

 if…else statements

 case…esac statements

if..fi Statements

The if construct is followed by a command. If an expression is to be tested, it is

enclosed in square brackets. The then keyword is placed after the closing parenthesis.

An if must end with a fi.

Syntax:

if [expression]

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

14 | P a g e

then

 Statements to be executed if true

fi

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

15 | P a g e

Task 3 Write the output of the following Control Structures.

i) #!/bin/bash

a=10
b=20
if [$a == $b]
then

echo "a is equal to b"
fi
if [$a != $b]
then

echo "a is not equal to b"
fi

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

16 | P a g e

if..else..Statements

The if…else…fi statements is the next form of control statements that allow shell to

execute statements in more controlled way and making decision in two ways.

Syntax

 if [expression]

 then

 Statement(s) to be executed if true

else

 Statement(s) to be executed if true

ii) #!/bin/bash

a=10
b=20
if [$a == $b]
then

echo "a is equal to b"
else

echo "a is not equal to b"
fi

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

17 | P a g e

if…else…elif…fi Statement

The if…elif…fi statement is to make correct decision out of several conditions.

Syntax

 if [expression 1]

 then

 Statement(s) to be executed if expression 1 is true

 elif [expression 2]

 Statement(s) to be executed if expression 2 is true

 elif [expression 3]

 Statement(s) to be executed if expression 3 is true

 else

 Statement(s) to be executed if no expression is true

 fi

iii) #!/bin/sh

a=10
b=20
if [$a == $b]

then
 echo “a is equal to b”

elif [$a –gt $b]
then

 echo “a is greater than b”

elif [$a –lt $b]
then

 echo “a is less than b”
else

 echo “None of the conditions met.”

fi

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

18 | P a g e

case…easc Statement

You can handle multiple if…elif statements to perform a multiway branch. However, this

is not the best solution, especially when all the branches depend the value of single

variable.

Syntax

 case word in

 pattern1)

 Statement(s) to be executed if pattern1 matches;;

 pattern2)

 Statement(s) to be executed if pattern1 matches;;

 pattern3)

 Statement(s) to be executed if pattern1 matches;;

 easc

iv) #!/bin/bash
echo "Enter fruit name"
read Fruit
case "$Fruit" in
 "apple") echo "Apple pie";;
 "banana") echo "I like banana";;
 "kiwi") echo "New Zealand famous for kiwi";;
esac

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

19 | P a g e

LOOPS

There are three types of loops: while, until and for. The while loop is followed by a command

or an expression enclosed in square brackets, a do keyword, a block of statements, and

terminated with the done keyword. As long as the expression is true, the body of statements

between do and done will be executed.

The until loop is just like the while loop, except the body of the loop will be executed as long as

the expression is false.

The for loop used to iterate through a list of words, processing a word and then shifting it off, to

process the next word. When all words have been shifted from the list, it ends. The for loop is

followed by a variable name, the in keyword, and a list of words then a block of statements, and

terminates with the done keyword.

The loop control commands are break and continue.

 Syntax

 While Loop

while command

 do

 block of statements

 done

 For Loop

 for var in word1……word

 do

 Statement(s) to be executed for every word

 done

 Until Loop

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

20 | P a g e

 Until command

 do

 Statement(s) to be executed until command is true

 done

Example

 for var in 0 1 2 3 4 5 6 7 8 9

 do

 echo $var

 done

Task 4 Write a program to enter the numbers till the user wants and at the end it should display the

maximum and minimum number entered.

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 6

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To study about the Linux Shell Programming. To write a shell program to

compare/concatenate the two strings. To find greatest of three numbers and to

perform the arithmetic operations using case.

Lab Tasks :

Task 1 : Write the output of the following array program.

Task 2: Write the output for concatenation of two strings.

Task 3 : Write the output of program for maximum of three numbers.

Task 4 : Write a program for implementing arithmetic operations using case.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 06 Shell Programming - II

Objective(s):

 To study about the Linux Shell Programming.

 To write a shell program to compare/concatenate the two strings.

 To find greatest of three numbers and to perform the arithmetic operations using

case.

Tool(s) used:

Ubuntu, VIM Editor

Arrays

Shell variable is capable enough to hold a single value. Shell supports a different type of variable called

an array variable that can hold multiple values at the same time. Arrays provide a method of grouping a

set of variables. Instead of creating a new name for each variable that is required, you can use a single

array variable that stores all the other variables.

Variables are assigned as,

 Name1 = “Zara”

 Name2 = “Sarah”

 Name3 = “Ali”

 Name4 = “Ayesha”

We can use single array to store all the above mentioned names. This could be achieved by array

 array_name[index]= value

Here array_name is the name of the array, index is the index of the item in the array that

you want to set, and value is the value you want to set for that item.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 1 Write the output of the following array program.

 #!/bin/bash

arr_name=(“SARAH” “ALI” “AHMED”)

echo “First Index : ” ${arr_name[0]}

echo “Second Index : ” ${arr_name[1]}

echo “Third Index : ” ${arr_name[2]}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 2 Write the output for concatenation of two strings.

Algorithm

Step 1 Enter into the vi editor and go to the insert mode for entering the code

Step 2 Read the first string.

Step 3 Read the second string

Step 4 Concatenate the two strings

Step 5 Enter into the escape mode for the execution of the result and verify the output.

Program

echo “enter the first

string” read str1

echo “enter the second

string” read str2

echo “the concatenated string is” $str1$str2

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

Task 2.1 Write the output for the comparison of two strings.

Algorithm

Step 1 Enter into the vi editor and go to the insert mode for entering the code

Step 2 Read the first string.

Step 3 Read the second string

Step 4 Compare the two strings using the if loop

Step 5 If the condition satisfies then print that two strings are equal else print two strings

are not equal.

Step 6 Enter into the escape mode for the execution of the result and verify the output

Program

echo “enter the first string” read str1

echo “enter the second string” read str2

if [$str1 = $str2] then

echo “strings are equal” else

echo “strings are unequal” fi

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Task 3 Write the output of program for maximum of three numbers.

Algorithm

Step 1 Declare the three variables.

Step 2 Check if A is greater than B and C.

Step 3 If so print A is greater.

Step 4 Else check if B is greater than C.

Step 5 If so print B is greater.

Step 6 Else print C is greater.

Program

echo "enter A" read a

echo "enter B" read b

echo "enter C" read c

if [$a -gt $b -a $a -gt $c] then

echo "A is greater"

elif [$b -gt $a -a $b -gt $c] then

echo "B is greater" else

echo "C is greater" fi

Sample I/P

Sample O/P

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

Task 4 Write a program for implementing arithmetic operations using case.

Algorithm

Step 1 Read the input variables and assign the value

Step 2 Print the various arithmetic operations which we are going to perform

Step 3 Using the case operator assign the various functions for the arithmetic operators.

Step 4 Check the values for all the corresponding operations.

Step 5 Print the result and stop the execution.

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 7

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To write a C program to implement the CPU scheduling algorithm for FIRST

COME FIRST SERVE. To write a C program to implement the CPU scheduling

algorithm for Shortest job first.

Lab Tasks :

Task 1 : Calculate the Average Time using FCFS Algorithm.

Task 2: Write the output of the program for First Come First Serve.

Task 3 : Calculate the Average Time using SJF Algorithm.

Task 4 : Write the output a program for Shortest Job First.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 7: Scheduling

Objective(s):

 To write a C program to implement the CPU scheduling algorithm for FIRST

COME FIRST SERVE.

 To write a C program to implement the CPU scheduling algorithm for Shortest job first.

Tool(s) used:

Ubuntu, VIM Editor

First Come First Serve

CPU scheduler will decide which process should be given to the CPU for its execution. For this it uses

different algorithms to choose among the process. One among that algorithm is FCFS algorithm. In this

algorithm, the process which arrive first is given to the CPU after finishing its request only it will allow

CPU to execute other process.

Task 1 : Calculate the Average Time using FCFS Algorithm.

Process Duration Order Arrival Time

P1 24 1 0

P2 3 2 0

P3 4 3 0

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 2 : Write the output of the program for First Come First Serve.

Step 1 : Create the number of process.

Step 2 : Get the ID and Service time for each process.

Step 3 : Initially, Waiting time of first process is zero and Total time for the

first process is the starting time of that process.

Step 4 : Calculate the Total time and Processing time for the remaining processes.

Step 5 : Waiting time of one process is the Total time of the previous process.

Step 6 : Total time of process is calculated by adding Waiting time and Service time.

Step 7 : Total waiting time is calculated by adding the waiting time for lack process.

Step 8 : Total turnaround time is calculated by adding all total time of each process.

Step 9 : Calculate Average waiting time by dividing the total waiting time by total

number of process.

Step 10 : Calculate Average turnaround time by dividing the total time by the number

of process.

Step 11 : Display the result.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Program

#include<stdio.h>

struct process{

 int id,wait,ser,tottime;

}p[20];

int main(){

 int i,n,j,totalwait=0,totalser=0,avwait;

 printf("enter number of process");

 scanf("%d",&n);

 for(i=1;i<=n;i++){

 printf("enter process_id");

 scanf("%d",&p[i].id);

 printf("enter process service time");

 scanf("%d",&p[i].ser);

 }

 p[1].wait=0;

 p[1].tottime=p[1].ser;

 for(i=2;i<=n;i++){

 for(j=1;j<i;j++){

 p[i].wait=p[i].wait+p[j].ser;

 }

 totalwait=totalwait+p[i].wait;

 p[i].tottime=p[i].wait+p[i].ser;

 totalser=totalser+p[i].tottime;

}

 avwait=totalwait/n;

 printf("Id\tservice\twait\ttotal");

 for(i=1;i<=n;i++){

 printf("\n%d\t%d\t%d\t%d\n",p[i].id,p[i].ser,p[i].wait,p[i].tottime);

}

printf("average waiting time %d\n",avwait);

return 0;

}

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Shortest Job First

CPU scheduler will decide which process should be given to the CPU for its execution. For this it uses

different algorithms to choose among the processes. One among that algorithm is Shortest Job First. In

this algorithm the process which has less service time given the CPU after finishing its request only it

will allow CPU to execute next other process.

Task 3 : Calculate the Average Time using SJF Algorithm.

Process Duration Order Arrival Time

P1 6 1 0

P2 8 2 0

P3 7 3 0

P4 3 4 0

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

Task 4 Write the output a program for Shortest Job First.

Step 1 : Get the number of process.

Step 2 : Get the id and service time for each process.

Step 3 : Initially the waiting time of first short process as 0 and total time of first short

is process the service time of that process.

Step 4 : Calculate the total time and waiting time of remaining process.

Step 5 : Waiting time of one process is the total time of the previous process.

Step 6 : Total time of process is calculated by adding the waiting time and

service time of each process.

Step 7 : Total waiting time calculated by adding the waiting time of each process.

Step 8 : Total turnaround time calculated by adding all total time of each process.

Step 9 : Calculate average waiting time by dividing the total waiting time by total

number of process.

Step 10 : Calculate average turnaround time by dividing the total waiting time by

total number of process.

 Step 11 : Display the result.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

Program

#include<stdio.h>

struct ff{

 int pid,ser,wait;

}p[20];

struct ff tmp;

int main(){

 int i,n,j,tot=0,avwait,totwait=0,tturn=0,aturn;

 printf("Enter the number of process");

 scanf("%d",&n);

 for(i=0;i<n;i++){

 printf("Enter process id");

 scanf("%d",&p[i]);

 printf("Enter service time");

 scanf("%d",&p[i].ser);

 p[i].wait=0;

}

 for(i=0;i<n-1;i++){

 for(j=i+1;j<n;j++){

 if(p[i].ser>p[j].ser){

 tmp=p[i];

 p[i]=p[j];

 p[j]=tmp;

 }

 }

 }

 printf("PID\tSER\tWAIT\tTOT\n");

 for(i=0;i<n;i++){

 tot=tot+p[i].ser;

 p[i+1].wait=tot;

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

 totwait=totwait+p[i].wait;

 printf("%d\t%d\t%d\t%d\n",p[i].pid,p[i].ser,p[i].wait,tot);

}

 avwait=totwait/n;

 printf("TOTAL WAITING TIME:%d\n",totwait);

 printf("AVERAGE WAITING TIME: %d\n",avwait);

return 0;

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 8

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To write a C program to implement CPU scheduling algorithm for Priority

Scheduling.

Lab Tasks :

Task 01: Calculate the Average Time using Priority Scheduling.

Task 02: Write the algorithm for Priority Scheduling Algorithm.

Task 03 + 04: Write the output for program of Priority Scheduling.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 08: Priority Scheduling

Objective(s):

To write a C program to implement CPU scheduling algorithm for Priority Scheduling.

Tool(s) used:

Ubuntu, VIM Editor

CPU scheduler will decide which process should be given the CPU for its execution. For this it use

different algorithm to choose among the process. One among that algorithm is FCFS algorithm. In this

algorithm the process which arrives first is given the CPU after finishing its request only it will allow

CPU to execute other process. In priority scheduling algorithm each process has a priority associated

with it and as each process hits the queue, it is stored in based on its priority so that process with higher

priority are dealt with first. It should be noted that equal priority processes are scheduled in FCFS order.

Task 01: Calculate the Average Time using Priority Scheduling.

Process CPU Burst

Time

Priority

P1 9 5

P2 4 3

P3 5 1

P4 7 2

P5 3 4

Total 28

https://www.thecrazyprogrammer.com/2014/11/c-cpp-program-for-first-come-first-served-fcfs.html

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 02: Write the algorithm for Priority Scheduling Algorithm.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 03+04: Write the output for program of Priority Scheduling.

#include <stdio.h>

int main()

{

 int bt[20],p[20],wt[20],tat[20],pr[20],i,j,n,total=0,pos,temp,avg_wt,avg_tat;

 printf("Enter Total Number of Process:");

 scanf("%d",&n);

 printf("\nEnter Burst Time and Priority\n");

 for(i=0;i<n;i++)

 {

 printf("\nP[%d]\n",i+1);

 printf("Burst Time:");

 scanf("%d",&bt[i]);

 printf("Priority:");

 scanf("%d",&pr[i]);

 p[i]=i+1; //contains process number

 }

 //sorting burst time, priority and process number in ascending order

 for(i=0;i<n;i++)

 {

 pos=i;

 for(j=i+1;j<n;j++){

 if(pr[j]<pr[pos])

 pos=j;

 }

 temp=pr[i];

 pr[i]=pr[pos];

 pr[pos]=temp;

 temp=bt[i];

 bt[i]=bt[pos];

 bt[pos]=temp;

 temp=p[i];

 p[i]=p[pos];

 p[pos]=temp;

 }

wt[0]=0; //waiting time for first process is zero

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

//calculate waiting time

 for(i=1;i<n;i++){

 wt[i]=0;

 for(j=0;j<i;j++)

 wt[i]+=bt[j];

 total+=wt[i];

 }

 avg_wt=total/n; //average waiting time

 printf("\nProcess\t Burst Time \tWaiting Time ");

 for(i=0;i<n;i++){

 printf("\nP[%d]\t\t %d\t\t %d",p[i],bt[i],wt[i]);

 }

 printf("\n\nAverage Waiting Time=%d",avg_wt);

 return 0;

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 9

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To write a program to create a process in LINUX. To create child with sleep

command. To understand getpid() and getppid().

Lab Tasks :

Task 1 : Write the output of program for process creation using fork command.

Task 2: Write the output of a program for execution of ls command using exec.

Task 3 : Write the output of a program illustrating the sleep command during process creation.

Task 4 : Write the output of the program for getting the pid and ppid while using the sleep

command.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 09: Processes

Objective(s):

 To write a program to create a process in LINUX.

 To create child with sleep command.

 To understand getpid() and getppid().

Tool(s) used:

Ubuntu, VIM Editor

Task 1 Write the output of a program for process creation using fork command.

 Algorithm

 STEP 1: Start the program.

 STEP 2: Declare pid as integer.

 STEP 3: Create the process using Fork command.

STEP 4: Check pid is less than 0 then print error else if pid is equal to 0 then execute

command else parent process wait for child process.

 STEP 5: Stop the program.

 Program

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(){

 int id;

 id=fork();

 if(id<0){

 printf ("Cannot Create the file");

 exit(-1);

 }

 if(id==0){

 printf ("Child Process");

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

 exit(0);

 }

 else{

 printf ("Parent Process");

 exit(1);

 }

return 0;

}

 Program Execution

$gcc pc.c –o pc

$./pc

 OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 2 Write the output of a program for execution of ls command using exec.

 Algorithm

STEP 1: Start the program.

STEP 2: Execute the command in the shell program using exec ls.

STEP 3: Stop the execution.

 Program

echo Program for executing LINUX command using Shell Programming

echo Welcome

ps

exec ls

 OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

Task 3 Write the output of a program illustrating the sleep command during process creation.

 Algorithm

 STEP 1: Start the program.

 STEP 2: Create process using fork and assign into a variable.

STEP 3: If the value of variable is < zero print not create and > 0 process create and else

print child create.

 STEP 4: Create child with sleep of 2.

 STEP 5: Stop the program.

 Program

#include <stdio.h>

#include <sys/types.h>

#include <stdlib.h>

#include <unistd.h>

int main(){

 pid_t id;

 id=fork();

 if (id==-1){

 printf ("Cannot Create the file");

 exit(1);

 }

 if (id==0){

 sleep(20);

 printf ("This is child Process");

 }

 else{

 printf ("Parent Process");

 exit(1);

 }

return 0;

}

 OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Task 4 Write the output of the program for getting the pid and ppid while using the sleep

command.

Algorithm

STEP 1: Start the execution and create a process using fork() command.

STEP 2: Make the parent process to sleep for 10 seconds.

STEP 3: In the child process print it pid and it corresponding pid.

STEP 4: Make the child process to sleep for 5 seconds.

STEP 5: Again print it pid and it parent pid.

STEP 6: After making the sleep for the parent process for 10 seconds print it pid.

STEP 7: Stop the execution.

Program

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(){

 pid_t pid;

 pid=fork();

 if(pid==0){

 printf("\nChild Process");

 printf("\nChild Process ID is %d", getpid());

 printf("\nIts Parent Process ID is %d", getppid());

 sleep(5);

 printf("\nChild Process after sleep=5");

 printf("\nChild Process ID is %d", getpid());

 printf("\nParent Process ID is %d", getppid());

 }

 else{

 printf("\n\nParent Process\n");

 sleep(5);

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

 printf("\nChild Process ID is %d", getpid());

 printf("\nIts Parent Process ID is %d", getppid());

 printf("\nParent Terminates\n");

 }

return 0;

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 10

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To write a program for signal handling in LINUX. To use wait command using

c program. To use wait command using c program and creating a separate

process using exec(). To create a Zombie Process.

Lab Tasks :

Task 1 :. Write the output of the program illustrating the Kill Command.

Task 2: Write the output of the program implementing the Wait signal.

Task 3 : Write the output of the program for wait signal using exec().

Task 4 : Write the output of the program for a Zombie Process.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 10: Signal Handling

Objective(s):

 To write a program for signal handling in LINUX,

 To use wait command using c program,

 To use wait command using c program and creating a separate process using

exec()

 To create a Zombie Process.

Tool(s) used:

Ubuntu, VIM Editor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 1 Write the output of the program illustrating the Kill Command.

Algorithm

STEP 1:Start the program

STEP 2:Read the value of pid.

STEP 3:Kill the command surely using kill-9 pid.

STEP 4:Stop the program.

Program

echo program for performing KILL operations

ps

echo enter the pid

read pid

kill -9 $pid

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 2 Write the output of the program implementing the Wait signal.

Algorithm

STEP 1: Start the execution

STEP 2: Create process using fork and assign it to a variable

STEP 3: Check for the condition pid is equal to 0

STEP 4: If it is true print the value of i and terminate the child process

STEP 5: If it is not a parent process has to wait until the child terminate

STEP 6: Stop the execution

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

Program

main(){

 pid_t pid;

int i=10;

pid=fork();

if(pid==0){

printf(“initial value of i %d \n “,i);

i+=10;

printf(“value of i %d\n “,i);
printf(“child terminated \n”);}

else{

wait(NULL);

printf(“value of i in parent process %d”,i);

}

 return 0;

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Task 3 Write the output of the program for a Zombie Process.

Algorithm

STEP 1: Start the execution

STEP 2: Create process using fork and assign it to a variable

STEP 3: Check for the condition pid is equal to 0

STEP 4: If it is true print Child Process

STEP 5: If it is not a parent process has to wait until the child terminates

STEP 6: Parent process should print Parent Process.

STEP 7: Stop the execution

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

Program

int main(){

 pid_t pid;

 pid=fork();

 if(pid==0){

 printf(“Child Process”);}

 else{

 sleep(10);

 wait(NULL);

 printf(“Parent Process”);}

 return 0; }

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

Task 4 Write the output of the program for wait signal using exec()

Algorithm

STEP 1: Start the execution

STEP 2: Create process using fork and assign it to a variable

STEP 3: Check for the condition pid is equal to 0

STEP 4: If it is true print the commands to be executed by ls.

STEP 5: If it is not a parent process has to wait until the child terminates

STEP 6: Parent process should print Child Process completed.

STEP 7: Stop the execution

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

10 | P a g e

Program

int main(){

 pid_t pid;

 if(pid<0){

 fprintf(stderr, “Fork Failed”);

 return 1;}

else if(pid ==0){

 execlp(“/bin/ls”, “ls”,NULL);}

else{

 wait(NULL);

 printf(“Child Completes”);}

return 0;}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 11

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand Mutex and Thread Synchronization.

Lab Tasks :

Task 1 : Write the output of Hello World program using Threads.

Task 2: Write the outptut of program for Mutex Hello World.

Task 3 Identify the output error in Thread Synchronization Problem.

Task 4 : Write the output for Mutex for Thread Synchronization.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 11: Thread Synchronization

Objective(s):

To write a C program to understanding Mutex and Synchronization.

Tool(s) used:

Ubuntu, VIM Editor

Thread synchronization is defined as a mechanism which ensures that two or more concurrent processes

or threads do not simultaneously execute some particular program segment known as critical section.

Processes’ access to critical section is controlled by using synchronization techniques. When one thread

starts executing the critical section (serialized segment of the program) the other thread should wait

until the first thread finishes. If proper synchronization techniques are not applied, it may cause a race

condition where the values of variables may be unpredictable and vary depending on the timings of

context switches of the processes or threads.

http://www.geeksforgeeks.org/g-fact-70/
http://practice.geeksforgeeks.org/problems/what-is-race-condition
http://practice.geeksforgeeks.org/problems/what-is-race-condition

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 01: Write the output of Hello World program using Threads.

#include <pthread.h>

#include <stdio.h>

void* compute_thread (void*);

int main(){

pthread_t tid;

pthread_attr_t attr;

char hello[] = {"Hello, "};

char thread[] = {"thread"};

pthread_attr_init(&attr);

pthread_create(&tid, &attr, compute_thread, thread);

printf(hello);

sleep(1);

printf("\n");

exit(0);

}

void* compute_thread(void* dummy){

printf(dummy);

return 0;}

OUTPUT:

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Task 02: Write the outptut of program for Mutex Hello World.

#include <pthread.h>
#include <stdio.h>
void* compute_thread (void*);
pthread_mutex_t my_sync;

main(){

pthread_t tid;
pthread_attr_t attr;
char hello[] = {"Hello, "};
char thread[] = {"thread"};
pthread_attr_init (&attr);
pthread_mutex_init (&my_sync,NULL);
pthread_create(&tid, &attr, compute_thread, hello);
sleep(1);
pthread_mutex_lock(&my_sync);
printf(thread);
printf("\n");
pthread_mutex_unlock(&my_sync);
exit(0);}

void* compute_thread(void* dummy){

pthread_mutex_lock(&my_sync);
printf(dummy);
pthread_mutex_unlock(&my_sync);
sleep(1);

return;
}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

Task 03: Identify the output error in Thread Synchronization Problem.

#include<stdio.h>

#include<string.h>

#include<pthread.h>

#include<stdlib.h>

#include<unistd.h>

pthread_t tid[2];

int counter;

void* trythis(void *arg){

 unsigned long i = 0;

 counter += 1;

 printf("\n Job %d has started\n", counter);

 for(i=0; i<(0xFFFFFFFF);i++);

 printf("\n Job %d has finished\n", counter);

 return NULL;

}

int main(void){

 int i = 0;

 int error;

 while(i < 2){

 error = pthread_create(&(tid[i]), NULL, &trythis, NULL);

 if (error != 0)

 printf("\nThread can't be created : [%s]", strerror(error));

 i++;

 }

 pthread_join(tid[0], NULL);

 pthread_join(tid[1], NULL);

 return 0;

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

Task 04: Write the output for Mutex for Thread Synchronization.

#include<stdio.h>
#include<string.h>
#include<pthread.h>
#include<stdlib.h>
#include<unistd.h>

pthread_t tid[2];
int counter;
pthread_mutex_t lock;
void* trythis(void *arg){
 pthread_mutex_lock(&lock);
 unsigned long i = 0;
 counter += 1;
 printf("\n Job %d has started\n", counter);
 for(i=0; i<(0xFFFFFFFF);i++);
 printf("\n Job %d has finished\n", counter);
 pthread_mutex_unlock(&lock);
 return NULL;
}

int main(void){
 int i = 0;
 int error;
 if (pthread_mutex_init(&lock, NULL) != 0){
 printf("\n mutex init has failed\n");
 return 1;
 }
 while(i < 2) {
 error = pthread_create(&(tid[i]), NULL, &trythis, NULL);
 if (error != 0)
 printf("\nThread can't be created :[%s]", strerror(error));
 i++;
 }
 pthread_join(tid[0], NULL);
 pthread_join(tid[1], NULL);
 pthread_mutex_destroy(&lock);
 return 0;
}

OUTPUT:

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 12

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To implement Producer & Consumer Problem (Semaphore).

Lab Tasks :

Task 01: Write the code to initialize Semaphore Mutex.

Task 02: Write the code according the requirement if it’s a consumer.

Task 03: Write the code according to the requirement if it’s a producer.

Task 04: Display the result.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 12: Semaphore

Objective(s):

To implement Producer & Consumer Problem (Semaphore)

Tool(s) used:

Ubuntu, VIM Editor

A semaphore, in its most basic form, is a protected integer variable that can facilitate and restrict access

to shared resources in a multi-processing environment. The producer–consumer problem is a classic

example of a multi-process synchronization problem. The problem describes two processes, the

producer and the consumer, who share a common, fixed-size buffer used as a queue. The producer's job

is to generate data, put it into the buffer, and start again. At the same time, the consumer is consuming

the data (i.e., removing it from the buffer), one piece at a time. The problem is to make sure that the

producer won't try to add data into the buffer if it's full and that the consumer won't try to remove data

from an empty buffer.

Task 01: Write the code for the Semaphore mutex, full & empty initialized.

Task 02: Write the code in the case of producer process.

i) Produce an item in to temporary variable.

ii) If there is empty space in the buffer check the mutex value for enter into the

critical section.

iii) If the mutex value is 0, allow the producer to add value in the temporary

variable to the buffer.

Task 03: Write the code in the case of consumer process.

i) It should wait if the buffer is empty

ii) If there is any item in the buffer check for mutex value, if the mutex==0,

remove item from buffer

iii) Signal the mutex value and reduce the empty value by 1.

iv) Consume the item.

https://en.wikipedia.org/wiki/Process_%28computing%29
https://en.wikipedia.org/wiki/Synchronization_%28computer_science%29
https://en.wikipedia.org/wiki/Buffer_%28computer_science%29
https://en.wikipedia.org/wiki/Queue_%28data_structure%29

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 04: Print the result.

Program

#define BUFFERSIZE 10

int

mutex,n,empty,full=0,item,item

1;

int buffer[20];

int

in=0,out=0,mutex=1;

void wait(int s)

{

while(s<0)

{

printf(“\nCannot add an

item\n”); exit(0);

}

s--;

}

void signal(int s)

{

s++;

}

void producer()

{

Do

{

wait (empty);

wait(mutex);

printf(“\nEnter an

item:”);

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

scanf(“%d”,&item);

buffer[in]=item;

in=in+1;

signal(mutex);

signal(full);

}

while(in<n);

}

void consumer()

{

Do

{

wait(full);

wait(mutex);

item1=buffer[out]; printf(“\nConsumed item

=%d”,item1);

out=out+1;

signal(mutex);

signal(empty);

}

while(out<n);

}

void main()

{

printf(“Enter the value of n:”);

scanf(“%d “,&n);

empty=n;

while(in<n)

producer();

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

while(in!=out)

consumer();

}

OUTPUT

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 13

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand memory management using paging.

Lab Tasks :

Task 01: Explain memory management.

Task 02: Explain the process of paging.

Task 03: Differentiate between logical and physical address.

Task 04: Write the output of the program given in Lab Manual.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 13: Memory Management Scheme-Paging

Objective(s):

 To write a C program to implement memory management using paging technique.

Tool(s) used:

Ubuntu, VIM Editor

Paging:

Paging is a memory management scheme that eliminates the need for contiguous allocation of physical

memory. This scheme permits the physical address space of a process to be non – contiguous.

 Logical Address or Virtual Address (represented in bits): An address generated by the CPU

 Logical Address Space or Virtual Address Space(represented in words or bytes): The set of all

logical addresses generated by a program

 Physical Address (represented in bits): An address actually available on memory unit

 Physical Address Space (represented in words or bytes): The set of all physical addresses

corresponding to the logical addresses

Read the base address, page size, number of pages and memory unit. If the memory limit is less than the

base address display the memory limit is less than limit. Create the page table with the number of pages

and page address. Read the page number and displacement value. If the page number and displacement

value is valid, add the displacement value with the address corresponding to the page number and display

the result. Display the page is not found or displacement should be less than page size. Stop the program.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

PROGRAM

#include<stdio.h>

#include<unistd.h>

void main(){

int b[20],n,i,pa,p,a,d;

printf(“\nProgram for

paging”); scanf(“%d”,&n);

printf(“\nEnter the base

address:”);

for(i=0;i<n;i++){

scanf(“%d”,&b[i]);

}

printf(“\nEnter the logical

address:”); scanf(“%d”,&p);

for(i=0;i<n;i++){

if(i==p){

pa=b[i]+d;

a=b[i];

printf(“\n\tPageNo.\t BaseAdd. PhysicalAdd. \n\t %d \t

%d \t %d \t

”,p,a,pa);

}

}

printf(“\nInvalid page”);

}

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

Sample Input 1

Sample Output 1

Sample Input 2

Sample Output 2

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 14

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand concepts of Deadlocks and Banker’s Algorithm.

Lab Tasks :

Task 1: What is a deadlock and Banker’s Algorithm?

Task 2: Which data structures is being used in Banker’s Algorithm?

Task 3 & 4: Write and analyze the program to illustrate the Banker’s Algorithm.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 14: Deadlocks and Banker’s Algorithm

Objective(s):

 To understand concepts of Deadlocks and Banker’s Algorithm.

Task 1: What is a deadlock and Banker’s Algorithm?

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by

simulating the allocation for predetermined maximum possible amounts of all resources, then makes an

“s-state” check to test for possible activities, before deciding whether allocation should be allowed to

continue.

Task 2: Which data structures is being used in Banker’s Algorithm?

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available:

 It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

 Available [j] = k means there are ‘k’ instances of resource type Rj

Max:

 It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.
 Max[i, j] = k means process Pi may request at most ‘k’ instances of resource type Rj.

Allocation:

 It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently
allocated to each process.

 Allocation[i, j] = k means process Pi is currently allocated ‘k’ instances of resource type Rj

Need:
 It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

 Need [i, j] = k means process Pi currently allocated ‘k’ instances of resource type Rj

 Need [i, j] = Max [i, j] – Allocation [i, j]

Allocationi specifies the resources currently allocated to process P i and Needi specifies the additional
resources that process P i may still request to complete its task.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Task 3 & 4: Write and analyze the program to illustrate the Banker’s Algorithm.

PROGRAM:

// C++ program to illustrate Banker's Algorithm

#include <iostream>

using namespace std;

// Number of processes

const int P = 5;

// Number of resources

const int R = 3;

// Function to find the need of each process

void calculateNeed(int need[P][R], int maxm[P][R],

 int allot[P][R])

{

 // Calculating Need of each P

 for (int i = 0 ; i < P ; i++)

 for (int j = 0 ; j < R ; j++)

 // Need of instance = maxm instance -

 // allocated instance

 need[i][j] = maxm[i][j] - allot[i][j];

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

}

// Function to find the system is in safe state or not

bool isSafe(int processes[], int avail[], int maxm[][R],

 int allot[][R])

{

 int need[P][R];

 // Function to calculate need matrix

 calculateNeed(need, maxm, allot);

 // Mark all processes as infinish

 bool finish[P] = {0};

 // To store safe sequence

 int safeSeq[P];

 // Make a copy of available resources

 int work[R];

 for (int i = 0; i < R ; i++)

 work[i] = avail[i];

 // While all processes are not finished

 // or system is not in safe state.

 int count = 0;

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

 while (count < P)

 {

 // Find a process which is not finish and

 // whose needs can be satisfied with current

 // work[] resources.

 bool found = false;

 for (int p = 0; p < P; p++)

 {

 // First check if a process is finished,

 // if no, go for next condition

 if (finish[p] == 0)

 {

 // Check if for all resources of

 // current P need is less

 // than work

 int j;

 for (j = 0; j < R; j++)

 if (need[p][j] > work[j])

 break;

 // If all needs of p were satisfied.

 if (j == R)

 {

 // Add the allocated resources of

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

 // current P to the available/work

 // resources i.e.free the resources

 for (int k = 0 ; k < R ; k++)

 work[k] += allot[p][k];

 // Add this process to safe sequence.

 safeSeq[count++] = p;

 // Mark this p as finished

 finish[p] = 1;

 found = true;

 }

 }

 }

 // If we could not find a next process in safe

 // sequence.

 if (found == false)

 {

 cout << "System is not in safe state";

 return false;

 }

 }

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

8 | P a g e

 // If system is in safe state then

 // safe sequence will be as below

 cout << "System is in safe state.\nSafe"

 " sequence is: ";

 for (int i = 0; i < P ; i++)

 cout << safeSeq[i] << " ";

 return true;

}

// Driver code

int main()

{

 int processes[] = {0, 1, 2, 3, 4};

 // Available instances of resources

 int avail[] = {3, 3, 2};

 // Maximum R that can be allocated

 // to processes

 int maxm[][R] = {{7, 5, 3},

 {3, 2, 2},

 {9, 0, 2},

 {2, 2, 2},

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

9 | P a g e

 {4, 3, 3}};

 // Resources allocated to processes

 int allot[][R] = {{0, 1, 0},

 {2, 0, 0},

 {3, 0, 2},

 {2, 1, 1},

 {0, 0, 2}};

 // Check system is in safe state or not

 isSafe(processes, avail, maxm, allot);

 return 0;

}

OPERATING SYSTEM LABORATORY MANUAL

UNIVERSITY OF THE PUNJAB
FACULTY OF COMPUTING & INFORMATION TECHNOLOGY, LAHORE

DEPARTMENT OF COMPUTER SCIENCE

Course: Operating System Lab Date:

Course Code: CC-217-3L Max Marks: 40

Faculty/Instructor’s Name &

Email:
Dr. Ahmad Hassan Butt (ahmad.hassan@pucit.edu.pk)

 LAB MANUAL # 15

(SPRING 2023)

Name:____________________________________ Enroll No: __________________________

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

2 | P a g e

Objective(s) :

To understand the concepts of socket programming with threads using the C programming

language in a Linux environment. The lab includes an introduction, objectives,

equipment/software requirements, code examples, and exercises.

Lab Tasks :

Task 1: What is Sockets Programming?

Task 2: Write and analyze code for ‘client.c’

Task 3: Write and analyze code for ‘server.c’

Task 4: Implement threads to support multiple client requests simultaneously.

Lab Grading Sheet :

Task
Max

Marks

Obtained

Marks
Comments(if any)

1. 10

2. 10

3. 10

4. 10

Total 40 Signature

Note : Attempt all tasks and get them checked by your Instructor

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

3 | P a g e

Lab 15: Socket Programming using Threads in Linux

Objective(s):

To understand the concepts of socket programming using the C programming language in a Linux

environment. The lab includes an introduction, objectives, equipment/software requirements, code

examples, and exercises. This lab will introduce you to socket programming in a Linux

environment using the C programming language. You will learn how to create a simple server that

listens for incoming connections and a client that connects to the server. Additionally, you will

implement threads to handle multiple client connections concurrently. These skills are

fundamental for developing networked applications and understanding the basics of concurrent

programming.

Socket Programming:

It is a fundamental aspect of network programming that allows processes to communicate over a

network. This lab focuses on creating a simple server-client application using sockets in the Linux

environment. Additionally, threads are employed to handle multiple client connections

concurrently.

Implementations:

 Understand the basics of socket programming.

 Implement a simple server that listens for incoming connections.

 Develop a client program to connect to the server.

 Use threads to handle multiple client connections simultaneously.

Code Files:

 ‘server.c’: Code for the server application.

 ‘client.c’: Code for the client application.

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

4 | P a g e

Program Code for ’server.c’

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <arpa/inet.h>

#include <pthread.h>

#define PORT 8080

#define MAX_CLIENTS 5

void *handleClient(void *socket_desc)

{

 int client_socket = *(int *)socket_desc;

 char buffer[1024] = {0};

 char *message = "Hello from server!\n";

 // Send a welcome message to the client

 send(client_socket, message, strlen(message), 0);

 // Receive data from the client

 recv(client_socket, buffer, sizeof(buffer), 0);

 printf("Client message: %s\n", buffer);

 // Close the socket and free the thread's resources

 close(client_socket);

 free(socket_desc);

 return NULL;

}

int main()

{

 int server_fd, client_socket;

 struct sockaddr_in server_addr, client_addr;

 pthread_t thread_id;

 // Create a socket

 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)

 {

 perror("Socket creation failed");

 exit(EXIT_FAILURE);

 }

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

5 | P a g e

 server_addr.sin_family = AF_INET;

 server_addr.sin_addr.s_addr = INADDR_ANY;

 server_addr.sin_port = htons(PORT);

 // Bind the socket to the specified address and port

 if (bind(server_fd, (struct sockaddr *)&server_addr,

sizeof(server_addr)) < 0)

 {

 perror("Bind failed");

 exit(EXIT_FAILURE);

 }

 // Listen for incoming connections

 if (listen(server_fd, MAX_CLIENTS) < 0)

 {

 perror("Listen failed");

 exit(EXIT_FAILURE);

 }

 printf("Server listening on port %d...\n", PORT);

 while (1)

 {

 int addr_len = sizeof(client_addr);

 // Accept a new connection

 if ((client_socket = accept(server_fd,

(struct sockaddr *)&client_addr,

(socklen_t *)&addr_len)) < 0)

 {

 perror("Accept failed");

 exit(EXIT_FAILURE);

 }

 // Create a new thread to handle the client

 int *new_socket = malloc(sizeof(int));

 *new_socket = client_socket;

 if (pthread_create(&thread_id,

NULL, handleClient, (void *)new_socket) < 0)

 {

 perror("Thread creation failed");

 exit(EXIT_FAILURE);

 }

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

6 | P a g e

 // Detach the thread to allow it to run independently

 pthread_detach(thread_id);

 }

 return 0;

}

Program Code for ‘client.c’

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <arpa/inet.h>

#define PORT 8080

int main()

{

 int sock = 0;

 struct sockaddr_in server_addr;

 char buffer[1024] = {0};

 // Create a socket

 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 perror("Socket creation failed");

 exit(EXIT_FAILURE);

 }

 server_addr.sin_family = AF_INET;

 server_addr.sin_port = htons(PORT);

 // Convert IPv4 and IPv6 addresses from text to binary form

 if (inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr) <= 0)

{

 perror("Invalid address/ Address not supported");

 exit(EXIT_FAILURE);

 }

OPERATING SYSTEM LABORATORY MANUAL | CC-217-3L

DR. AHMAD HASSAN BUTT

DEPARTMENT OF COMPUTER SCIENCE, FCIT-PU, LAHORE

7 | P a g e

 // Connect to the server

 if (connect(sock, (struct sockaddr *)&server_addr,

sizeof(server_addr)) < 0)

 {

 perror("Connection failed");

 exit(EXIT_FAILURE);

 }

 // Receive a welcome message from the server

 recv(sock, buffer, sizeof(buffer), 0);

 printf("%s", buffer);

 // Send a message to the server

 char *message = "Hello from client!";

 send(sock, message, strlen(message), 0);

 close(sock);

 return 0;

}

Tasks and Exercises:

Compile and Run:

 Compile both server.c and client.c using GCC.

 Run the server and client in separate terminal windows.

 Observe the interaction between the client and server.

Multiple Clients:

 Modify the server code to handle multiple clients concurrently using threads.

 Test the server by connecting multiple clients simultaneously.

Enhancements:

 Add error handling to both the server and client code.

 Implement message exchange between the server and multiple clients.

Protocol Design:

 Design a simple protocol for communication between the server and clients.

 Modify the server and client code to adhere to the protocol.

	Lab Manual OS 22-11-2023
	Operating System - Lab Manual # 1
	Operating System - Lab Manual # 2
	Operating System - Lab Manual # 3
	Operating System - Lab Manual # 4
	Operating System - Lab Manual # 5
	Operating System - Lab Manual # 6
	Operating System - Lab Manual # 7
	Operating System - Lab Manual # 8
	Operating System - Lab Manual # 9
	Operating System - Lab Manual # 10
	Operating System - Lab Manual # 11
	Operating System - Lab Manual # 12
	Operating System - Lab Manual # 13
	Operating System - Lab Manual # 14
	Operating System - Lab Manual # 15

